pytorch怎么实现多层gru
时间: 2024-02-02 16:03:54 浏览: 151
以下是使用PyTorch实现多层GRU的代码示例:
```python
import torch.nn as nn
class GRUNet(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(GRUNet, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, h):
out, h = self.gru(x, h)
out = self.fc(out[:, -1, :])
return out, h
input_size = 1
hidden_size = 64
num_layers = 2
output_size = 1
model = GRUNet(input_size, hidden_size, num_layers, output_size)
```
其中,`GRUNet`类继承自`nn.Module`,包含一个`nn.GRU`层和一个全连接层`nn.Linear`。`forward`方法接收输入`x`和隐藏状态`h`,返回输出`out`和更新后的隐藏状态`h`。在这个示例中,输入序列的长度为1000,每个时间步的输入特征维度为1,输出序列的长度为1。
阅读全文