克里金插值法 协方差矩阵
时间: 2023-08-03 16:08:13 浏览: 254
克里金插值法中的协方差矩阵是用来描述空间点之间的相关性的。协方差矩阵是一个对称矩阵,其中的元素表示不同空间点之间的协方差。在普通克里金插值算法中,协方差矩阵的元素可以通过半方差函数来计算。半方差函数描述了不同空间点之间的相关性随着距离的变化而变化的规律。通过计算已知属性点之间的距离和半方差函数值,可以构建协方差矩阵。然后,通过高斯牛顿迭代法求解未知参数λi,即可得到协方差矩阵的逆矩阵。最终,利用协方差矩阵的逆矩阵和已知属性值,可以进行克里金插值,估计未知空间点的属性值。引用[1]中提到的普通克里金插值算法是一种常见的克里金插值方法,它假设空间属性是均匀的,并且对于空间中的任意一点,具有相同的数学期望和方差。因此,在普通克里金插值中,协方差矩阵的元素可以通过半方差函数来计算。引用[2]中提到的简单克里金插值是一种特殊的克里金插值方法,它不需要满足无偏约束条件∑ni=0λi=1。因为在简单克里金插值中,假设E(Ri)=0,即期望的偏差为0,所以无偏约束条件不需要满足。因此,简单克里金插值方法可以直接求解未知参数λi,而不需要进行约束条件的优化。
相关问题
Rbf中的linear函数和克里金插值法的linear有什么不同
RBF中的linear函数与克里金插值法中的linear函数有相似之处,但两者并不完全相同。
在RBF中,linear函数的形式为:
f(x) = c0 + c1 * x1 + c2 * x2 + ... + cn * xn
其中,c0、c1、c2等是待求解的系数,x1、x2、...、xn是输入数据的各个维度。该函数与线性回归模型中的线性函数形式相同,用于拟合数据点之间的线性关系。
而在克里金插值法中,linear函数的形式为:
f(x) = c0 + c1 * x1 + c2 * x2 + ... + cn * xn
其中,c0、c1、c2等是待求解的系数,x1、x2、...、xn是输入数据的各个维度。不同的是,在克里金插值法中,linear函数是在计算权值函数时使用的,用于描述输入数据点之间的线性相关性。通过计算输入数据点之间的协方差矩阵,可以求解出linear函数的系数,从而计算出输入数据点之间的权重。
因此,虽然RBF和克里金插值法中都使用了linear函数,但其应用场景和作用方式有所不同。
克里金插值方法 vb代码
### 回答1:
克里金插值方法是一种建立空间插值模型的方法,在地球物理、气象、环境科学、地质等领域广泛应用。下面给出了克里金插值方法的 VB 代码实现。
首先需要定义一个类 Kriging,其中包含了一些属性和方法:
```
'定义Krige类
Public Class Kriging
'定义变量
Dim x() As Double '观测点x坐标
Dim y() As Double '观测点y坐标
Dim z() As Double '观测点z值
Dim mat As Double(,) '观测点之间的协方差矩阵
Dim nugget As Double '点源变异函数
Dim sill As Double '结构变异函数
Dim range As Double '相关长度
'定义方法
Public Sub AddPoint(ByVal XVal As Double, ByVal YVal As Double, ByVal ZVal As Double)
'添加观测点
End Sub
Public Sub Fit()
'计算协方差矩阵
End Sub
Public Function Predict(ByVal XVal As Double, ByVal YVal As Double) As Double
'预测新值
End Function
End Class
```
在 AddPoint 方法中,需要将观测点的坐标和对应的 z 值存储到 x、y、z 数组中。在 Fit 方法中,需要计算观测点之间的协方差矩阵,以及点源变异函数 nugget、结构变异函数 sill 和相关长度 range。其中,点源变异函数可以用指定常数表示,结构变异函数可以选择高斯、指数或球型函数来拟合实际数据。计算协方差矩阵时,可以使用 variogram 函数。
```
'计算协方差矩阵的函数
Private Function variogram(ByVal x1 As Double, ByVal y1 As Double, ByVal z1 As Double, ByVal x2 As Double, ByVal y2 As Double, ByVal z2 As Double, ByVal range As Double, ByVal sill As Double, ByVal nugget As Double) As Double
Dim d As Double = ((x1 - x2) ^ 2 + (y1 - y2) ^ 2) ^ 0.5
If d > range Then
Return sill
Else
Return nugget + sill * (1.5 * (d / range) - 0.5 * (d / range) ^ 3)
End If
End Function
'计算协方差矩阵的函数
Private Sub calcMat()
Dim n As Integer = x.Length
mat = New Double(n, n) {}
For i As Integer = 0 To n - 1
For j As Integer = i To n - 1
Dim d As Double = ((x(i) - x(j)) ^ 2 + (y(i) - y(j)) ^ 2) ^ 0.5
mat(i, j) = variogram(x(i), y(i), z(i), x(j), y(j), z(j), range, sill, nugget)
mat(j, i) = mat(i, j)
Next
mat(i, i) += 0.1
Next
End Sub
```
在 Predict 方法中,需要通过解克里金方程求出预测点的插值值:
```
'求解克里金方程的函数
Private Function solve(ByVal A As Double(,), ByVal b As Double(), ByVal n As Integer) As Double()
Dim L As Double(,) = New Double(n, n) {}
Dim x As Double() = New Double(n - 1) {}
For i As Integer = 0 To n - 1
For j As Integer = 0 To i
Dim s As Double = 0
For k As Integer = 0 To j - 1
s += L(i, k) * L(j, k)
Next
If i = j Then
L(i, j) = Math.Sqrt(A(i, i) - s)
Else
L(i, j) = 1.0 / L(j, j) * (A(i, j) - s)
End If
Next
Next
For i As Integer = 0 To n - 1
Dim s As Double = 0
For j As Integer = 0 To i - 1
s += L(i, j) * x(j)
Next
x(i) = 1.0 / L(i, i) * (b(i) - s)
Next
Return x
End Function
'预测新值的函数
Public Function Predict(ByVal XVal As Double, ByVal YVal As Double) As Double
Dim n As Integer = x.Length
Dim b As Double() = New Double(n - 1) {}
For i As Integer = 0 To n - 1
b(i) = variogram(XVal, YVal, 0, x(i), y(i), z(i), range, sill, nugget)
Next
Dim A As Double(,) = mat
For i As Integer = 0 To n - 1
A(i, n) = 1
A(n, i) = 1
Next
A(n, n) = 0
b(n) = 1
Dim c As Double() = solve(A, b, n + 1)
Dim z As Double = 0
For i As Integer = 0 To n - 1
z += c(i) * variogram(XVal, YVal, 0, x(i), y(i), 0, range, sill, nugget)
Next
Return z
End Function
```
通过这些 VB 代码,可以实现一个简单的克里金插值方法,用于预测新值。不过,在实际应用中,为了提高插值精度,一般需要进行交叉验证和参数优化,以找到最优的 nugget、sill 和 range。
### 回答2:
克里金插值方法是基于样点之间的空间关系建立模型,对未知点进行估计,常用于地质物探、大气科学、地理信息系统等领域。VB(Visual Basic)是一种编程语言,常用于Windows操作系统开发以及应用软件开发。下面是克里金插值方法的VB代码实现。
代码首先定义了数据结构体,包括空间坐标和变量值,以及两个函数,一个用来计算两个点之间的距离,一个用来计算半方差。主函数中首先读取样点数据,然后通过循环计算未知点的估计值,其中Lagrange插值法用于解决样点中存在多个点与待估点距离相等的问题。最后将未知点的估计值输出到文件中。
```
Structure SPoint
Public X As Double
Public Y As Double
Public Z As Double
Public Value As Double
End Structure
Function Distance(P1 As SPoint, P2 As SPoint) As Double
Distance = Sqr((P1.X - P2.X) ^ 2 + (P1.Y - P2.Y) ^ 2 + (P1.Z - P2.Z) ^ 2)
End Function
Function Semivariance(D As Double, Range As Double, Nugget As Double, Sill As Double, Power As Double) As Double
If D = 0 Then
Semivariance = Nugget
ElseIf D > Range Then
Semivariance = Sill
Else
Semivariance = Nugget + (Sill - Nugget) * (1 - (D / Range) ^ Power)
End If
End Function
Sub Main()
Dim Known() As SPoint
Dim Unknown() As SPoint
Dim NumKnown As Integer
Dim NumUnknown As Integer
Dim Ranges(3) As Double
Dim Nuggets(3) As Double
Dim Sills(3) As Double
Dim Powers(3) As Double
Dim f As Integer
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim D As Double
Dim V As Double
Dim Estimate As Double
NumKnown = FreeFile()
NumUnknown = FreeFile()
Open App.Path & "\known_data.txt" For Input As NumKnown
Open App.Path & "\unknown_data.txt" For Input As NumUnknown
Input NumKnown, Ranges(1), Sills(1), Nuggets(1), Powers(1)
Input NumKnown, Ranges(2), Sills(2), Nuggets(2), Powers(2)
Input NumKnown, Ranges(3), Sills(3), Nuggets(3), Powers(3)
i = 0
Do Until EOF(NumKnown)
i = i + 1
ReDim Preserve Known(i)
Input NumKnown, Known(i).X, Known(i).Y, Known(i).Z, Known(i).Value
Loop
i = 0
Do Until EOF(NumUnknown)
i = i + 1
ReDim Preserve Unknown(i)
Input NumUnknown, Unknown(i).X, Unknown(i).Y, Unknown(i).Z
Estimate = 0
For j = 1 To UBound(Known)
D = Distance(Unknown(i), Known(j))
V = Semivariance(D, Ranges(3), Nuggets(3), Sills(3), Powers(3))
For k = 1 To UBound(Known)
If j <> k Then
D = Distance(Known(j), Known(k))
V = V * Semivariance(D, Ranges(f), Nuggets(f), Sills(f), Powers(f))
End If
Next
Estimate = Estimate + Known(j).Value * V
Next
Print #1, Unknown(i).X, Unknown(i).Y, Unknown(i).Z, Estimate
Loop
Close NumKnown
Close NumUnknown
End Sub
```
以上是克里金插值方法的VB代码实现,需要注意的是,代码中的参数(包括半方差函数的参数以及样点数据等)需要根据具体情况进行设置和调整。
### 回答3:
克里金插值方法是一种地质插值方法,常用于地质学、水文学、环境科学等领域。VB代码实现克里金插值方法如下:
Private Function KrigingMetod() As Double()
Dim n, m, k, l, i, j, p As Long
Dim sum, C1, C2, C3, C4, vari As Double
Dim cyklus As Long
Dim X(), Y(), Z() As Double
Dim K() As Double
n = UBound(coord)
ReDim Z(n) As Double
ReDim K(n * n) As Double
'初始化临近点间距'
For i = 1 To n
For j = i + 1 To n
l = (n * i) + j
K(l) = (coord(i, 1) - coord(j, 1)) ^ 2
K(l) = K(l) + (coord(i, 2) - coord(j, 2)) ^ 2
K(l) = Sqr(K(l))
Next j
Next i
'预处理所有自变量'
For i = 1 To n - 1
For j = i + 1 To n
l = (n * i) + j
K(l) = covariogram(K(l))
K(l + (n * n)) = K(l)
Next j
Next i
'为所有区域计算平均值'
vari = 0
For i = 1 To n
vari = vari + Z(i)
Next i
vari = vari / n
'处理距离表(包含两两变量间的平均值)'
ReDim X(n * n) As Double
For i = 1 To n
cyklus = (i * n)
For j = 1 To n
If i = j Then
X(((cyklus - n) + j)) = vari
Else
l = (n * i) + j
X(((cyklus - n) + j)) = covariogram(K(l))
X(((j - 1) * n) + i) = X(((cyklus - n) + j))
End If
Next j
Next i
'根据距离表计算距离权重'
ReDim Y(n) As Double
For i = 1 To n
sum = 0
For j = 1 To n
sum = sum + X(((i - 1) * n) + j)
Next j
Y(i) = 1 / sum
Next i
'准备计算'
ReDim C2(n) As Double
ReDim C3(n, n) As Double
ReDim C4(n) As Double
m = UBound(v_coord) - LBound(v_coord) + 1
ReDim K1(m * m) As Double
ReDim K2(m * n) As Double
'计算残差平方和'
cyklus = LBound(v_coord) - 1
For i = LBound(v_coord) To UBound(v_coord)
cyklus = cyklus + 1
C1 = sqr((coord(1, 1) - v_coord(i, 1)) ^ 2 + (coord(1, 2) - v_coord(i, 2)) ^ 2)
For j = 1 To n
C2(j) = sqr((coord(j, 1) - v_coord(i, 1)) ^ 2 + (coord(j, 2) - v_coord(i, 2)) ^ 2)
C3(j, j) = 1
Next j
For j = 1 To n - 1
For k = j + 1 To n
l = (n * j) + k
C3(j, k) = covariogram(C2(j) - C2(k))
C3(k, j) = C3(j, k)
Next k
Next j
For j = 1 To n
l = (n * j) + j
C4(j) = covariogram(C1 - C2(j))
K2(((cyklus - 1) * n) + j) = C4(j)
Next j
cyklus2 = cyklus
For j = 1 To m
cyklus2 = cyklus2 + 1
C1 = sqr((coord(1, 1) - v_coord(i, 1)) ^ 2 + (coord(1, 2) - v_coord(i, 2)) ^ 2)
For k = 1 To n
C2(k) = sqr((coord(k, 1) - v_coord(cyklus2, 1)) ^ 2 + (coord(k, 2) - v_coord(cyklus2, 2)) ^ 2)
Next k
For k = 1 To n - 1
For l = k + 1 To n
p = (n * k) + l
K1(((j - 1) * m) + k, ((j - 1) * m) + l) = covariogram(C2(k) - C2(l))
K1(((j - 1) * m) + l, ((j - 1) * m) + k) = K1(((j - 1) * m) + k, ((j - 1) * m) + l)
Next l
Next k
For k = 1 To n
l = (n * k) + k
K2(((j - 1) * m) + j, ((cyklus - 1) * n) + k) = covariogram(C1 - C2(k))
K2(((cyklus - 1) * n) + k, ((j - 1) * m) + j) = K2(((j - 1) * m) + j, ((cyklus - 1) * n) + k)
Next k
Next j
'计算解向量(U)和残差'
solve_matrix(LBound(v_coord), UBound(v_coord), n, m, K2, C3, Y, U)
cyklus2 = cyklus
For j = 1 To m
cyklus2 = cyklus2 + 1
vari = 0
For k = 1 To n
vari = vari + (U(k) * covariogram(sqr((coord(k, 1) - v_coord(cyklus2, 1)) ^ 2 + (coord(k, 2) - v_coord(cyklus2, 2)) ^ 2)))
Next k
Z(cyklus2) = vari + variogram(vari)
Next j
Next i
KrigingMetod = Z
End Function
其中,covariogram函数用于计算协方差函数,solve_matrix函数用于解线性方程组,variogram函数用于计算变差函数。这段VB代码可以实现基础的克里金插值方法,但需要注意调整参数以解决具体问题。
阅读全文