adc128s102使用

时间: 2024-08-29 17:00:29 浏览: 29
ADC128S102是一款模拟数字转换器(Analog-to-Digital Converter,简称ADC),它是一种将连续的模拟信号转换成数字信号的电子元件,常用于数据采集、工业控制和信号处理等领域。这款特定型号的ADC属于12位分辨率,意味着它可以提供非常高的精度,能够测量输入信号的细微变化。 ADC128S102的主要特性包括: 1. **高分辨率**:12位转换精度提供了大约4096个计数等级,对于许多应用来说这提供了足够的精度。 2. **并行接口**:通常有并行数据输出,使得数据传输速度较快。 3. **多种工作模式**:支持单次转换、连续转换等模式,适应不同应用需求。 4. **内置采样保持功能**:有助于减少由于信号抖动引起的误差。 5. **硬件校准功能**:可以提高转换结果的准确性和一致性。 使用ADC128S102时,开发者通常需要完成以下几个步骤: 1. **初始化设置**:配置适当的参考电压、转换速率和接口模式。 2. **启动转换**:发送触发信号开始A/D转换过程。 3. **读取结果**:等待转换完成后从数据线获取转换后的数字值。 4. **数据处理**:对收集到的数据进行相应的算法处理。
相关问题

stm32 adc128s102

The STM32 ADC128S102 is a high-speed, low-power, 12-bit analog-to-digital converter (ADC) with a maximum sampling rate of 128 mega-samples per second (MSPS). It is designed for high-performance applications that require high-speed and high-resolution analog-to-digital conversion, such as in medical imaging, radar systems, and communication equipment. The ADC128S102 is based on a successive approximation register (SAR) architecture and features a low-power mode, programmable gain amplifier (PGA), and a fully differential input. It also includes a programmable digital filter that can be used to improve the signal-to-noise ratio (SNR) of the ADC. The ADC128S102 is compatible with the STM32 microcontroller family and can be easily integrated into existing designs. It supports both single-ended and differential input modes and can operate with a supply voltage range of 1.8V to 3.6V. Overall, the STM32 ADC128S102 is a high-performance ADC that provides fast and accurate analog-to-digital conversion for a wide range of applications.

请给出TI ADC128S102应用在STM32cubemx上生成的mian.c文件代码

抱歉,我无法生成代码文件。但是,您可以通过以下步骤手动创建ADC128S102的代码: 1. 在STM32cubemx中选择您的微控制器和ADC128S102。 2. 配置ADC128S102的引脚和时钟。 3. 选择ADC模式和采样率。 4. 生成代码并打开生成的main.c文件。 5. 在main.c文件中添加以下代码: ```c #include "stm32f4xx_hal.h" #include "adc.h" ADC_HandleTypeDef hadc; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC_Init(); while (1) { HAL_ADC_Start(&hadc); HAL_ADC_PollForConversion(&hadc, 100); uint16_t adc_value = HAL_ADC_GetValue(&hadc); HAL_ADC_Stop(&hadc); // use adc_value } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } static void MX_ADC_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; hadc.Instance = ADC1; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.ScanConvMode = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.NbrOfConversion = 1; hadc.Init.DMAContinuousRequests = DISABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; // configure channel sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_0; // configure pin GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } ``` 这是一个基本的ADC示例代码,您需要根据您的应用程序进行更改和优化。

相关推荐

最新推荐

recommend-type

基于微信小程序的新生报到系统设计与实现.docx

基于微信小程序的新生报到系统设计与实现.docx
recommend-type

基于java的电商平台的设计与实现.docx

基于java的电商平台的设计与实现.docx
recommend-type

基于java的大学生智能消费记账系统的设计与实现.docx

基于java的大学生智能消费记账系统的设计与实现.docx
recommend-type

基于java的植物健康系统设计与实现.docx

基于java的植物健康系统设计与实现.docx
recommend-type

weixin151云匹面粉直供微信小程序+springboot.rar

所有源码,都可正常运行
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。