二位fft的python代码
时间: 2023-11-03 15:05:24 浏览: 90
以下是两个 Python 实现的快速傅里叶变换(FFT)算法:
1. 递归实现:
```python
import cmath
def fft(x):
n = len(x)
if n == 1:
return x
even = fft(x[0::2])
odd = fft(x[1::2])
T = [cmath.exp(-2j * cmath.pi * k / n) * odd[k] for k in range(n // 2)]
return [even[k] + T[k] for k in range(n // 2)] + [even[k] - T[k] for k in range(n // 2)]
```
2. 非递归实现:
```python
import cmath
def fft(x):
n = len(x)
if n <= 1:
return x
even = fft(x[0::2])
odd = fft(x[1::2])
T = [cmath.exp(-2j * cmath.pi * k / n) * odd[k] for k in range(n // 2)]
return [even[k % (n // 2)] + T[k] for k in range(n)]
def fft_iterative(x):
n = len(x)
levels = int(n.bit_length()) - 1
if 2**levels != n:
raise ValueError("Length is not a power of 2")
# bit-reversed indices
rev = [int('{:0{width}b}'.format(i, width=levels)[::-1], 2) for i in range(n)]
X = x[:]
# bit-reversed permutation
for i in range(n):
if i < rev[i]:
X[i], X[rev[i]] = X[rev[i]], X[i]
# Cooley-Tukey decimation-in-time radix-2 FFT
size = 2
while size <= n:
halfsize = size // 2
tablestep = n // size
for i in range(0, n, size):
k = 0
for j in range(i, i + halfsize):
t = cmath.exp(-2j * cmath.pi * k / size) * X[j + halfsize]
X[j + halfsize] = X[j] - t
X[j] += t
k += tablestep
size *= 2
return X
```
阅读全文