请用torch编写一个卷积神经网络模型,用于图像6分类问题,并用summary函数输出每一层的形状。已知输入网络形状大小为(10,3,256,256),截图代码和输出结果
时间: 2024-12-20 18:30:36 浏览: 18
好的,首先,我们需要安装PyTorch库,如果你还没有安装,可以使用pip进行安装:
```bash
pip install torch torchvision
```
然后我们可以开始编写一个简单的卷积神经网络(Convolutional Neural Network,简称CNN)模型。这是一个基础的6分类模型示例,我们将使用`torch.nn`模块构建。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchsummary import summary
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
# 定义卷积层、池化层、全连接层
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 8 * 8, 128)
self.relu4 = nn.ReLU()
self.dropout = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(128, 6) # 输出层,6个类别
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.pool3(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu4(x)
x = self.dropout(x)
out = self.fc2(x)
return out
# 创建模型实例并获取输入尺寸
model = ConvNet()
input_shape = (10, 3, 256, 256) # 假设我们有10个样本
x = torch.randn(input_shape)
# 使用summary函数输出模型结构及每层维度
summary(model, input_size=input_shape)
# 这里只是模拟输出,真实的summary函数会返回一个文本描述
# 假设输出如下(实际输出会更详细)
# Model Summary:
# ------------------------------------
# Total params: 1,790,440
# Trainable params: 1,790,440
# Non-trainable params: 0
# ------------------------------------
# Input size (MB): 0.24
# Forward/backward pass size (MB): 5.11
# Params size (MB): 7.21
# Estimated total size (MB): 12.56
```
注意这只是一个基本的模型架构,实际应用中可能需要调整参数、添加更多层次或使用预训练模型等。
阅读全文