图像增强评价指标python
时间: 2024-03-26 19:33:27 浏览: 155
python实现图像增强
3星 · 编辑精心推荐
图像增强评价指标是用来衡量图像增强算法效果的指标,常用于评估图像增强算法的性能和比较不同算法之间的优劣。以下是一些常见的图像增强评价指标及其Python实现:
1. 峰值信噪比(Peak Signal-to-Noise Ratio,PSNR):PSNR是衡量图像质量的常用指标,它通过计算原始图像与增强后图像之间的均方误差来评估图像的失真程度。Python中可以使用OpenCV库来计算PSNR,具体代码如下:
```python
import cv2
def calculate_psnr(original_img, enhanced_img):
mse = np.mean((original_img - enhanced_img) ** 2)
max_pixel = 255.0
psnr = 20 * np.log10(max_pixel / np.sqrt(mse))
return psnr
# 示例用法
original_img = cv2.imread('original.jpg')
enhanced_img = cv2.imread('enhanced.jpg')
psnr = calculate_psnr(original_img, enhanced_img)
print("PSNR:", psnr)
```
2. 结构相似性指数(Structural Similarity Index,SSIM):SSIM是一种衡量图像相似性的指标,它考虑了亮度、对比度和结构等方面的信息。Python中可以使用scikit-image库来计算SSIM,具体代码如下:
```python
from skimage.metrics import structural_similarity as ssim
def calculate_ssim(original_img, enhanced_img):
ssim_score = ssim(original_img, enhanced_img, multichannel=True)
return ssim_score
# 示例用法
original_img = cv2.imread('original.jpg')
enhanced_img = cv2.imread('enhanced.jpg')
ssim_score = calculate_ssim(original_img, enhanced_img)
print("SSIM:", ssim_score)
```
3. 均方根误差(Root Mean Square Error,RMSE):RMSE是衡量图像增强算法效果的一种指标,它表示原始图像与增强后图像之间的差异程度。Python中可以使用scikit-learn库来计算RMSE,具体代码如下:
```python
from sklearn.metrics import mean_squared_error
def calculate_rmse(original_img, enhanced_img):
rmse = np.sqrt(mean_squared_error(original_img, enhanced_img))
return rmse
# 示例用法
original_img = cv2.imread('original.jpg')
enhanced_img = cv2.imread('enhanced.jpg')
rmse = calculate_rmse(original_img, enhanced_img)
print("RMSE:", rmse)
```
阅读全文