环形缓冲区实现 FIFO

时间: 2023-09-01 17:09:43 浏览: 53
环形缓冲区是一种实现先进先出(FIFO)功能的数据结构,常用于串口通信、音频处理等场景。它通过利用固定大小的缓冲区和读写指针,实现循环存储和数据的连续读写。 下面是一种常见的环形缓冲区实现方式: ```c #define BUFFER_SIZE 10 typedef struct { uint8_t buffer[BUFFER_SIZE]; uint8_t readIndex; uint8_t writeIndex; } CircularBuffer; void bufferInit(CircularBuffer* buffer) { buffer->readIndex = 0; buffer->writeIndex = 0; } void bufferWrite(CircularBuffer* buffer, uint8_t data) { buffer->buffer[buffer->writeIndex] = data; buffer->writeIndex = (buffer->writeIndex + 1) % BUFFER_SIZE; } uint8_t bufferRead(CircularBuffer* buffer) { uint8_t data = buffer->buffer[buffer->readIndex]; buffer->readIndex = (buffer->readIndex + 1) % BUFFER_SIZE; return data; } ``` 使用上述代码可以实现一个大小为 BUFFER_SIZE 的环形缓冲区。通过调用 `bufferWrite()` 函数可以将数据写入缓冲区,调用 `bufferRead()` 函数可以从缓冲区读取数据。 需要注意的是,在多线程或中断环境下使用环形缓冲区时,需要使用适当的同步机制(如互斥锁或原子操作)来保证数据的一致性和线程安全性。 以上只是一种简单的环形缓冲区实现方式,实际应用中可能会根据需求进行相应的调整和优化。

相关推荐

最新推荐

recommend-type

C#环形缓冲区(队列)完全实现

主要为大家详细介绍了C#环形缓冲区(队列)完全实现代码,感兴趣的小伙伴们可以参考一下
recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

JavaScript_超过100种语言的纯Javascript OCR.zip

JavaScript
recommend-type

JavaScript_跨平台React UI包.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。