辅助分类器pytorch代码
时间: 2024-02-26 15:50:39 浏览: 107
当我们使用PyTorch进行辅助分类时,可以使用多种和技术。以下是一个简单的示例代码,展示了如何使用PyTorch构建和训练一个辅助分类器:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# 定义辅助分类器模型
class AuxiliaryClassifier(nn.Module):
def __init__(self, input_size, num_classes):
super(AuxiliaryClassifier, self).__init__()
self.fc1 = nn.Linear(input_size, 64)
self.fc2 = nn.Linear(64, num_classes)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion, device):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 定义测试函数
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
# 设置超参数
input_size = 784
num_classes = 10
batch_size = 64
learning_rate = 0.001
num_epochs = 10
# 加载数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型、损失函数和优化器
model = AuxiliaryClassifier(input_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 将模型移动到GPU(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 训练和测试模型
for epoch in range(num_epochs):
train(model, train_loader, optimizer, criterion, device)
test(model, test_loader, criterion, device)
```
这段代码展示了如何使用PyTorch构建一个简单的辅助分类器模型,并在MNIST数据集上进行训练和测试。你可以根据自己的需求进行修改和扩展。
阅读全文