yolov5后处理详解
时间: 2024-05-15 22:11:52 浏览: 415
YOLOv5是一种目标检测算法,用于检测图像或视频中的物体。其后处理步骤包括非极大值抑制(NMS)、置信度阈值筛选等。具体地说,YOLOv5的后处理步骤如下:
1. 首先,对每个网格cell的每个anchor,计算置信度得分。每个anchor对应的得分为该anchor包含物体的概率乘以该物体的置信度。其中,物体的置信度指的是在进行训练时,使用交叉熵损失函数计算得到的物体存在概率。
2. 对于每个网格cell,保留置信度得分最高的anchor,并将其对应的物体检测框作为预测框。
3. 对于所有预测框,执行非极大值抑制(NMS)操作。NMS操作会剔除那些与置信度最高的预测框IoU重叠程度高于一定阈值(一般为0.5)的预测框。
4. 最后,根据预测框的置信度得分进行筛选。只保留得分高于设定阈值(一般为0.25)的预测框。
相关问题
yolov5后处理 详解
yolov5的后处理包括解码和筛选两个主要步骤。首先,通过使用核函数对yolov5的输出结果进行解码,将输出的tensor(n x 85)恢复成框的坐标和类别信息。其中,85是cx, cy, width, height, objness, classification*80。\[1\]解码后的结果是相对于调整图片的xywh坐标。
接下来,进行筛选的过程。首先,对每张图片进行单独的预测,提取出张量\[(p3*p3+p4*p4+p5*p5)*3, 5+cls_nums\]。然后,从这个张量中筛选出大于阈值的框。如果有标签信息,将标签信息添加到筛选的框后面。如果没有框,就继续处理下一张图片。\[3\]
总结起来,yolov5的后处理包括解码和筛选两个步骤。解码将输出的tensor恢复成框的坐标和类别信息,而筛选则是根据阈值对框进行筛选,并将标签信息添加到筛选的框后面。\[1\]\[3\]
#### 引用[.reference_title]
- *1* [Yolov5后处理代码 | cpu部分](https://blog.csdn.net/weixin_43236007/article/details/128390593)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [关于yolov5后处理细节](https://blog.csdn.net/weixin_43088933/article/details/124195863)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
yolov5的框架详解
YOLOv5是一种基于深度学习的目标检测框架,使用Python编写,支持GPU和CPU两种计算环境。它是YOLO(You Only Look Once)系列的最新版本,相比于之前的版本,YOLOv5在速度和精度上都有了明显的提升。
YOLOv5的主要特点和优势如下:
1.快速:YOLOv5采用的是基于单个神经网络的端到端目标检测方法,能够实时进行目标检测。
2.高精度:YOLOv5采用的是新的SPP(Spatial Pyramid Pooling)结构,可以在不增加计算量的情况下提高检测精度。
3.易于训练:YOLOv5的训练和测试都非常简单,只需要几行代码就可以完成。
4.开源:YOLOv5是开源的,任何人都可以自由使用和修改。
下面是YOLOv5的具体流程:
1.输入图片数据,将其缩放到指定大小。
2.将缩放后的图片数据送入卷积神经网络中。
3.经过多个卷积层和池化层的处理,提取出图片特征。
4.使用SPP结构对特征进行处理,得到不同尺度的特征图。
5.将不同尺度的特征图和原始特征图融合在一起,得到最终的特征图。
6.对特征图进行卷积操作,得到目标检测结果。
7.使用非极大值抑制算法去除重叠框,得到最终的检测结果。
总的来说,YOLOv5是一种快速、高精度、易于训练、开源的目标检测框架,适用于各种视觉应用领域,如自动驾驶、智能安防、机器人等。
阅读全文