resnet18 cifar10
时间: 2023-11-11 17:50:03 浏览: 159
ResNet 是一种卷积神经网络,它通过使用残差块和shortcut连接来解决深度网络中的模型退化问题。与传统的卷积神经网络相比,ResNet 可以训练更深的网络,并且在准确度上取得了显著的提升。
在对 Cifar10 数据集进行学习训练时,可以按照以下步骤进行操作:
1. 数据集的处理:首先,加载 Cifar10 数据集,并将图像数据进行预处理,例如对图像进行归一化、裁剪等操作,以便于后续的训练过程。
2. 构建 ResNet 模型:使用 PyTorch 或其他深度学习框架,可以选择使用预训练的 ResNet18 模型或自行构建 ResNet18 模型。ResNet18 模型由多个残差块组成,每个残差块包含卷积层和恒等映射(identity mapping)层。通过堆叠这些残差块,可以构建深度为18的 ResNet 模型。
3. Loss 计算:选择适当的损失函数,例如交叉熵损失函数,用于度量模型的输出与真实标签之间的差异。在每个训练批次中,根据模型的输出和真实标签计算损失值。
4. 准确度计算:使用准确度指标(accuracy)来评估模型的性能。在每个训练批次中,将模型的预测结果与真实标签进行比较,并计算正确预测的比例。
5. 数据保存:在训练过程中,可以选择定期保存模型的参数和优化器的状态,以便于在训练结束后进行模型的评估和使用。
相关问题
pytorch resnet18 cifar10
ResNet-18是一个经典的深度残差网络,特别用于解决深层网络中的梯度消失和梯度爆炸问题。它通过引入残差块和跳跃连接来实现,使得梯度能够更容易地在网络中传播,从而有助于训练更深的网络。这个网络在深度学习领域取得了很大的成功。在PyTorch中,可以使用以下代码实现ResNet-18对CIFAR-10数据集进行分类:
```python
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
# 数据导入
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class_nums = 10
# 定义ResNet-18网络
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=class_nums):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
# 创建ResNet-18模型
net = ResNet(BasicBlock, [2, 2, 2, 2])
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 在测试集上评估模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on the test set: %d %%' % (100 * correct / total))
```
resnet18 cifar100 pytorch
ResNet18是一种深度卷积神经网络模型,适用于图像分类任务。CIFAR100是一个包含100个类别的图像分类数据集。在PyTorch中,可以使用ResNet18模型对CIFAR100数据集进行训练和测试。
使用ResNet18对CIFAR100数据集进行训练的参数和代码如下:
```
# 导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
# 加载数据集
train_dataset = datasets.CIFAR100(root='./data', train=True, download=True, transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
test_dataset = datasets.CIFAR100(root='./data', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
train_loader = DataLoader(train_dataset, batch_size=1024, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
# 定义模型
class ResNet18(nn.Module):
def __init__(self, num_classes=100):
super(ResNet18, self).__init__()
self.resnet18 = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=False)
self.resnet18.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet18(x)
return x
# 训练模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNet18().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.002, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 120], gamma=0.1)
num_epochs = 200
best_acc = 0.0
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
train_acc = 0.0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc / len(train_loader.dataset)
model.eval()
test_loss = 0.0
test_acc = 0.0
for i, (images, labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item() * images.size(0)
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_loss = test_loss / len(test_loader.dataset)
test_acc = test_acc / len(test_loader.dataset)
if test_acc > best_acc:
best_acc = test_acc
torch.save(model.state_dict(), './res/best_model.pth')
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch + 1, num_epochs, train_loss, train_acc, test_loss, test_acc))
scheduler.step()
# 测试模型
model.load_state_dict(torch.load('./res/best_model.pth'))
model.eval()
test_acc = 0.0
for i, (images, labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_acc = test_acc / len(test_loader.dataset)
print('Test Acc: {:.4f}'.format(test_acc))
```
阅读全文