遗传算法求三元函数极值
时间: 2024-01-15 08:05:09 浏览: 159
用遗传算法求解函数极值
4星 · 用户满意度95%
遗传算法是一种基于自然选择和遗传学原理的优化算法,可以用于求解函数极值问题。下面是遗传算法求解三元函数极值的步骤:
1.定义适应度函数:对于三元函数f(x1,x2,x3)=x1*x1-x1*x2+x3,我们可以将其作为适应度函数,即fitness(x1,x2,x3)=f(x1,x2,x3)。
2.初始化种群:随机生成一定数量的个体,每个个体由三个实数编码表示,即x1、x2、x3。
3.选择操作:采用轮盘赌选择算子,根据个体适应度大小选择优秀的个体。
4.交叉操作:采用单点交叉算子,对选出的个体进行交叉操作,生成新的个体。
5.变异操作:对新生成的个体进行变异操作,增加种群的多样性。
6.评估函数:计算每个个体的适应度值。
7.选择优秀个体:根据适应度值选择优秀的个体。
8.重复执行步骤3-7,直到达到预设的迭代次数或找到最优解。
下面是Python代码实现:
```python
import random
# 定义适应度函数
def fitness(x1, x2, x3):
return x1 * x1 - x1 * x2 + x3
# 初始化种群
def init_population(pop_size):
population = []
for i in range(pop_size):
x1 = random.uniform(-10, 10)
x2 = random.uniform(-10, 10)
x3 = random.uniform(-10, 10)
population.append((x1, x2, x3))
return population
# 选择操作
def selection(population):
fitness_list = [fitness(*individual) for individual in population]
total_fitness = sum(fitness_list)
probability_list = [fitness / total_fitness for fitness in fitness_list]
selected_population = []
for i in range(len(population)):
selected_individual = random.choices(population, weights=probability_list)[0]
selected_population.append(selected_individual)
return selected_population
# 交叉操作
def crossover(population):
offspring_population = []
for i in range(len(population)):
parent1 = population[i]
parent2 = random.choice(population)
crossover_point = random.randint(0, 2)
offspring = parent1[:crossover_point] + parent2[crossover_point:]
offspring_population.append(offspring)
return offspring_population
# 变异操作
def mutation(population, mutation_rate):
mutated_population = []
for individual in population:
if random.random() < mutation_rate:
mutated_individual = list(individual)
mutated_individual[random.randint(0, 2)] += random.uniform(-1, 1)
mutated_population.append(tuple(mutated_individual))
else:
mutated_population.append(individual)
return mutated_population
# 遗传算法求解三元函数极值
def genetic_algorithm(pop_size, max_iter, mutation_rate):
population = init_population(pop_size)
for i in range(max_iter):
selected_population = selection(population)
offspring_population = crossover(selected_population)
mutated_population = mutation(offspring_population, mutation_rate)
population = mutated_population
best_individual = max(population, key=lambda x: fitness(*x))
return best_individual
# 测试
best_individual = genetic_algorithm(100, 1000, 0.1)
print("最优解:", best_individual)
print("最优解对应的函数值:", fitness(*best_individual))
```
阅读全文