seq2seq 完整代码
时间: 2023-09-28 18:11:55 浏览: 155
基于seq2seq实现拼音输入法【100012391】
以下是一个简单的seq2seq模型的完整代码示例:
```
import numpy as np
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense
# 定义输入序列的最大长度和词汇表大小
max_encoder_seq_length = 50
max_decoder_seq_length = 50
num_encoder_tokens = 10000
num_decoder_tokens = 5000
# 定义编码器输入
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(256, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
# 定义解码器输入
decoder_inputs = Input(shape=(None, num_decoder_tokens))
decoder_lstm = LSTM(256, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# 定义模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# 训练模型
encoder_input_data = np.random.rand(1000, max_encoder_seq_length, num_encoder_tokens)
decoder_input_data = np.random.rand(1000, max_decoder_seq_length, num_decoder_tokens)
decoder_target_data = np.random.rand(1000, max_decoder_seq_length, num_decoder_tokens)
model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=64, epochs=10)
# 使用训练好的模型进行预测
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(256,))
decoder_state_input_c = Input(shape=(256,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
# 定义解码器的辅助函数
def decode_sequence(input_seq):
states_value = encoder_model.predict(input_seq)
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, target_token_index['<START>']] = 1.
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
if (sampled_char == '<END>' or len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
states_value = [h, c]
return decoded_sentence
```
这只是一个简单的示例,实际使用中可能需要根据具体任务进行调整和优化。注意,上述代码中的数据是随机生成的,并未实际训练模型。在实际使用中,你需要准备自己的训练数据,并根据任务需求进行适当的修改。
阅读全文