yolov8针对类别不平衡
时间: 2023-09-02 17:14:40 浏览: 359
YOLOv8实战案例集锦.pdf
5星 · 资源好评率100%
针对类别不平衡,yolov8使用了一种平衡技术。以前的方法在训练过程中只针对COCO的部分类别进行训练,导致这些类别在推理过程中有更高的置信水平。然而,yolov8的方法是zero-shot的,它能够在不同类别之间实现平衡的置信水平,并预测出更多没有在COCO中出现的类别。这意味着yolov8能够更好地处理类别不平衡的情况,提高目标检测和实例分割的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [论文解读:FastSAM | Fast Segment Anything | 基于yolov8-seg实现 比SAM快50倍](https://blog.csdn.net/a486259/article/details/131453794)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [yolov8训练与应用](https://download.csdn.net/download/qq_34252622/87721371)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文