opencv基于sift和ransac的图像拼接

时间: 2023-11-14 08:03:09 浏览: 66
OpenCV基于SIFT(尺度不变特征变换)和RANSAC(随机抽样一致性)的图像拼接是一种常用的图像处理方法。SIFT是一种基于局部特征的图像配准技术,能够检测图像中的关键点并计算出其对应的描述符,具有尺度不变性和旋转不变性等优点,适用于不同尺度和角度的图像。RANSAC是一种鲁棒性很强的参数估计算法,能够从一组包含离群点的观测数据中,估计出一个数学模型的参数。 图像拼接基本流程是:首先对两幅图像分别进行SIFT特征点检测和描述符计算,然后通过匹配两幅图像中的特征点,得到它们之间的对应关系。接着利用RANSAC算法筛选出匹配点对,去除错误匹配,并估计出图像间的几何变换模型(如仿射变换或投影变换)。最后使用得到的几何变换模型将两幅图像进行融合,得到拼接好的图像。 OpenCV中提供了丰富的函数和类来实现基于SIFT和RANSAC的图像拼接,如cv::SIFT类用于SIFT特征点检测和描述符计算,cv::FlannBasedMatcher类用于特征点匹配,cv::findHomography函数用于估计图像间的几何变换模型等。这种基于SIFT和RANSAC的图像拼接方法能够有效处理不同尺度、角度和光照条件下的图像拼接任务,具有较好的鲁棒性和准确性。
相关问题

sift ransac python图像拼接

SIFT和RANSAC是图像拼接中常用的算法,可以使用Python中的OpenCV库来实现。 1. SIFT特征提取 使用OpenCV的SIFT算法可以提取图像的关键点和描述符。代码如下: ``` import cv2 # 读取图片 img1 = cv2.imread('img1.jpg') img2 = cv2.imread('img2.jpg') # 初始化SIFT sift = cv2.xfeatures2d.SIFT_create() # 提取特征点和描述符 kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) ``` 2. 特征点匹配 使用OpenCV的FLANN算法可以进行特征点匹配。代码如下: ``` # 初始化FLANN匹配器 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) # 匹配特征点 matches = flann.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) # 可视化匹配结果 img_match = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=2) cv2.imshow('matches', img_match) cv2.waitKey() ``` 3. RANSAC算法 使用OpenCV的findHomography函数可以使用RANSAC算法估计图像间的单应性矩阵。代码如下: ``` MIN_MATCH_COUNT = 10 if len(good_matches) > MIN_MATCH_COUNT: src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) else: print("Not enough matches are found - %d/%d" % (len(good_matches), MIN_MATCH_COUNT)) exit() # 拼接图片 h, w = img1.shape[:2] result = cv2.warpPerspective(img1, M, (w*2, h)) result[0:h, 0:w] = img2 cv2.imshow('result', result) cv2.waitKey() ``` 这样就可以用SIFT和RANSAC算法实现图像拼接了。

python opencv 图像sift配准拼接

1. 导入库 ``` import cv2 import numpy as np ``` 2. 读取图片 ``` img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') ``` 3. 提取关键点和特征向量 ``` sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) ``` 4. 匹配特征点 ``` bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) ``` 5. 筛选匹配点 ``` good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append(m) ``` 6. 计算变换矩阵 ``` src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) ``` 7. 图像拼接 ``` h,w = img1.shape[:2] pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) dst = np.int32(dst) offset = np.array([w,0]) dst += offset result_img = cv2.polylines(img2,[dst],True,(255,0,0),3, cv2.LINE_AA) result_img[offset[1]:h+offset[1],:w,:] = img1 ``` 完整代码: ``` import cv2 import numpy as np img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append(m) src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) h,w = img1.shape[:2] pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) dst = np.int32(dst) offset = np.array([w,0]) dst += offset result_img = cv2.polylines(img2,[dst],True,(255,0,0),3, cv2.LINE_AA) result_img[offset[1]:h+offset[1],:w,:] = img1 cv2.imshow("Result", result_img) cv2.waitKey(0) cv2.destroyAllWindows() ```

相关推荐

最新推荐

recommend-type

Python+OpenCV实现图像的全景拼接

总之,Python和OpenCV结合为图像全景拼接提供了强大工具,通过精心设计的算法和合理的参数设置,可以创建高质量的全景图像。对于更复杂的场景,可能需要引入更多的优化策略,如使用更多的特征点匹配算法(如SURF、...
recommend-type

图像处理案列三之图像拼接

3.求出样本图像的特征点坐标和测试图像的特征点坐标,找出这两坐标矩阵的H变换公式(利用RANSAC算法),将H变换公式对right图像做透视变换,得到拼接后的右边图像 4.将left原图赋给result对应的ROI区域,大功告成。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到