请给出使用C++实现DQN算法的代码示例
时间: 2024-10-23 14:10:38 浏览: 45
DE.zip_数值算法/人工智能_C/C++_
DQN(Deep Q-Network)是一种结合了深度学习和强化学习的算法,用于解决高维状态空间的决策问题。下面是一个使用C++实现DQN算法的基本代码示例。这个示例使用了一个简单的神经网络库,如Tiny-dnn或Eigen等。
```cpp
#include <iostream>
#include <vector>
#include <random>
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::layers;
using namespace tiny_dnn::activation;
// 定义网络结构
network<sequential> create_q_network() {
network<sequential> net;
net << fully_connected_layer(4, 16) << relu()
<< fully_connected_layer(16, 16) << relu()
<< fully_connected_layer(16, 2); // 假设有两个动作
return net;
}
// 选择动作
int select_action(const network<sequential>& q_net, const std::vector<float>& state, float epsilon) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0.0, 1.0);
if (dis(gen) < epsilon) {
// 随机选择动作
return rand() % 2;
} else {
// 选择Q值最大的动作
vec_t input = convert_to_vect(state);
auto output = q_net.predict(input);
return argmax(output);
}
}
// 训练网络
void train_network(network<sequential>& q_net, std::vector<std::tuple<std::vector<float>, int, float, std::vector<float>>>& memory, float learning_rate) {
adagrad optimizer;
for (auto& [state, action, reward, next_state] : memory) {
vec_t x = convert_to_vect(state);
vec_t y = q_net.predict(x);
y[action] = reward + 0.99 * max(q_net.predict(convert_to_vect(next_state))); // Q-learning更新规则
q_net.train<mse>(optimizer, {x}, {y}, 1, learning_rate);
}
}
int main() {
auto q_net = create_q_network();
std::vector<std::tuple<std::vector<float>, int, float, std::vector<float>>> memory;
float epsilon = 1.0;
float learning_rate = 0.01;
int num_episodes = 1000;
for (int episode = 0; episode < num_episodes; ++episode) {
std::vector<float> state = {0.0, 0.0, 0.0, 0.0}; // 初始状态
int done = 0;
while (!done) {
int action = select_action(q_net, state, epsilon);
std::vector<float> next_state = {/* 下一个状态 */};
float reward = /* 奖励 */;
done = /* 是否结束 */;
memory.emplace_back(state, action, reward, next_state);
state = next_state;
}
train_network(q_net, memory, learning_rate);
epsilon *= 0.995; // 逐渐减少探索率
}
return 0;
}
```
请注意,这个代码只是一个非常基础的框架,实际应用中需要根据具体问题调整网络结构、状态表示、奖励函数等。此外,还需要添加适当的错误处理和优化措施。
阅读全文