logistics回归分析
时间: 2024-01-26 10:03:32 浏览: 86
多元logistics回归分析PPT资料.pptx
Logistic回归分析是一种用于处理二分类问题的有监督学习方法。它通过分析各个影响因素(x1,x2,...xn)与分类结果y之间的关系,来建立一个分类模型。虽然它的名字是“回归”,但实际上是一种分类学习方法。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集,因此,logistic训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化方法。
下面是一个简单的Python实现,包括训练集和测试集:
```python
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import datasets
# 加载数据集
iris = datasets.load_iris()
X = iris.data[:, :2] # 只使用前两个特征
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 训练模型
clf = LogisticRegression()
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)
# 输出准确率
print("Accuracy:", clf.score(X_test, y_test))
```
阅读全文