#include<reg51.h> #include<intrins.h> #define dm P0 #define uchar unsigned char #define uint unsigned int sbit DQ=P1^6; sbit w0=P2^0; sbit w1=P2^1; sbit w2=P2^2; sbit w3=P2^3; sbit beep=P3^7; int temp1=0; uint h; uint temp; uchar r; uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09}; uchar code table_dm[12]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40}; uchar code table_dml[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; uchar data temp_data[2]={0x00,0x00}; uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; void delay(uint t) { for(;t>0;t--); } void xianshi() { int j; for(j=0;j<4;j++) { switch(j) { case 0: dm=table_dm[display[0]]; w0=0; delay(300); w0=1; case 1: dm=table_dml[display[1]]; w1=0; delay(300); w1=1; case 2: dm=table_dm[display[2]]; w2=0; delay(300); w2=1; case 3: dm=table_dm[display[3]]; w3=0; delay(300); w3=1; } } } ow_reset(void) { char presence=1; while(presence) { while(presence) { DQ=1;_nop_();_nop_(); DQ=0; delay(50); DQ=1; delay(6); presence=~DQ; } delay(45); presence=~DQ; } DQ=1; return presence; } void write_byte(uchar val) { uchar i; for(i=8;i>0;i--) { DQ=1;_nop_();_nop_(); DQ=0;_nop_();_nop_();_nop_();_nop_(); DQ=val&0x01; delay(6); val=val>>1; } DQ=1; delay(1); } uchar read_byte(void) { uchar i; uchar value=0; for(i=8;i>0;i--) { DQ=1;_nop_();_nop_(); value>>=1; DQ=0;_nop_();_nop_();_nop_();_nop_(); DQ=1;_nop_();_nop_();_nop_();_nop_(); if(DQ)value|=0x80; delay(6); } DQ=1; return value; } read_temp() { ow_reset(); delay(200); write_byte(0xcc); write_byte(0x44); ow_reset(); delay(1); write_byte(0xcc); write_byte(0xbe); temp_data[0]=read_byte(); temp_data[1]=read_byte(); temp=temp_data[1]; temp<<=8; temp=temp|temp_data[0]; return temp; } work_temp(uint tem) { uchar n=0; if(tem>6348) { tem=65536-tem; n=1; } display[4]=tem&0x0f; display[0]=ditab[display[4]]; display[4]=tem>>4; display[3]=display[4]/100; display[1]=display[4]%100; display[2]=display[1]/10; display[1]=display[1]%10; r=display[1]+display[2]*10+display[3]*100; if(!display[3]) { display[3]=0x0a; if(!display[2]) { display[2]=0x0a; } } if(n) { display[3]=0x0b; } return n; } void BEEP() { if((r>30)) { beep=!beep; } else { beep=0; } } void main() { beep=0; dm=0x00; w0=0; w1=0; w2=0; w3=0; for(h=0;h<4;h++) { display[h]=0; } ow_reset(); write_byte(0xcc); write_byte(0x44); for(h=0;h<50;h++) { xianshi(); } while(1) { if(temp1==0) { work_temp(read_temp()); xianshi(); BEEP(); } } }
时间: 2023-11-03 17:05:47 浏览: 159
这段代码是一个温度测量程序。使用了DS18B20温度传感器和单片机来实现温度的读取和显示。主要的流程如下:
1. 初始化IO口和变量。
2. 重置温度传感器,并发送温度转换命令。
3. 读取温度传感器的数据。
4. 将读取到的温度数据进行处理,计算出实际的温度值,并将其显示在数码管上。
5. 根据温度值,控制蜂鸣器的状态。
整个程序会循环执行,不断更新温度值并显示在数码管上,同时根据温度值控制蜂鸣器的状态。
需要注意的是,这段代码是针对特定硬件和引脚定义的,如果要在其他平台上运行,可能需要进行相应的修改和适配。
相关问题
#include<REGX51.H> #include<intrins.h> #define uchar unsigned char #define uint unsigned int什么意思
这段代码是一个基于51单片机的C语言程序,其中:
- `#include<REGX51.H>` 是包含了51单片机的头文件,可以使用其中定义的寄存器及功能;
- `#include<intrins.h>` 是包含了汇编语言的头文件,可以使用其中定义的内嵌汇编函数;
- `#define uchar unsigned char` 定义了一个名为`uchar`的宏,表示无符号字符类型;
- `#define uint unsigned int` 定义了一个名为`uint`的宏,表示无符号整数类型。
解释以下程序的设计思路:#include <reg52.h> #include "intrins.h" #include <stdio.h> #define u8 unsigned char #define u16 unsigned int #define uchar unsigned char #define uint unsigned int #define range_WS 5 #define range_GY
该程序使用了reg52.h和intrins.h库,分别用于访问51系列单片机寄存器和实现延时功能。同时,程序还使用了stdio.h库,用于格式化输出信息。
程序中定义了一些宏常量,如u8、u16、uchar、uint,用于规定变量的数据类型和范围。
在程序中,还定义了两个常量range_WS和range_GY,分别代表温湿度传感器和光照传感器的采集范围。
整个程序的主要功能是读取温湿度传感器和光照传感器采集的数据,并将数据通过串口传输到上位机进行处理。程序通过中断方式读取传感器数据,在中断处理函数中,通过调用intrins.h库实现延时功能,然后读取传感器数据并存储在相关变量中。
在主函数中,程序通过串口将读取到的传感器数据输出到上位机进行处理。同时,程序还实现了一个死循环,用于保证程序一直运行。
阅读全文