给出完整的用于3d图像分类的3d resnet18网络的python代码,包括数据处理(分成训练、验证、测试三部分)、训练以及训练结果评估(输出训练每个epoch的loss、acc,并进行prc、roc、混淆矩阵评估)
时间: 2024-10-09 12:12:36 浏览: 53
宝石数据集,已经分成训练集和测试集
为了提供一个完整的3D ResNet-18网络应用于3D图像分类的Python代码示例,我们将使用PyTorch库。首先,确保已经安装了torch、torchvision和其他必要的库。下面是一个简化的示例,包含数据预处理、模型训练、验证和评估的部分内容:
```python
# 导入所需库
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, datasets, models
from sklearn.metrics import precision_recall_curve, roc_auc_score, confusion_matrix
# 数据预处理
transform = transforms.Compose([
transforms.Resize((64, 64)), # 调整输入尺寸
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化
])
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, data_dir, transform=None, train=True):
self.data_dir = data_dir
self.transform = transform
self.train_data = ... # 加载训练数据
self.test_data = ... # 加载测试数据 (类似train_data)
def __len__(self):
return len(self.train_data) if train else len(self.test_data)
def __getitem__(self, idx):
img_path = ...
label = ...
sample = {'image': img_path, 'label': label}
if self.transform:
sample['image'] = self.transform(sample['image'])
return sample
# 创建数据加载器
batch_size = 32
train_dataset = CustomDataset('path_to_train_data', transform=transform, train=True)
val_dataset = CustomDataset('path_to_val_data', transform=transform, train=False)
test_dataset = CustomDataset('path_to_test_data', transform=transform, train=False)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
# 使用3D ResNet-18模型
model = models.resnet3d.resnet18(pretrained=False, num_classes=len(train_dataset.classes)) # 更改最后一层为你的类别数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练循环
for epoch in range(num_epochs):
model.train()
train_loss = 0
correct = 0
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum().item()
train_acc = correct / len(train_dataset)
print(f"Epoch {epoch + 1}/{num_epochs}, Training Loss: {train_loss / len(train_loader):.4f}, Train Acc: {train_acc:.4f}")
# 验证和评估
model.eval()
val_loss = 0
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
val_acc = evaluate_model_on_loader(model, val_loader)
print(f"Epoch {epoch + 1}/{num_epochs}, Validation Loss: {val_loss / len(val_loader):.4f}, Val Acc: {val_acc:.4f}")
# 可视化PRC和ROC曲线,计算AUC
prc_auc, _ = calculate_PR_and_ROC(model, test_loader, train_dataset.classes)
print(f"Epoch {epoch + 1}, PRC AUC: {prc_auc:.4f}")
# 混淆矩阵
cm = confusion_matrix(y_true=test_labels, y_pred=predicted)
plot_confusion_matrix(cm, classes=train_dataset.classes)
# 函数定义(省略)
def evaluate_model_on_loader(model, loader):
correct = 0
total = 0
for images, labels in loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct / total
def calculate_PR_and_ROC(model, loader, classes):
y_true, y_pred = [], []
for images, labels in loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, preds = torch.max(outputs.data, 1)
y_true.extend(labels.tolist())
y_pred.extend(preds.tolist())
prc_auc = precision_recall_curve(y_true, y_pred)
roc_auc = roc_auc_score(y_true, y_pred)
return prc_auc[-1], roc_auc
# 其他函数(如混淆矩阵绘制等)
```
注意:这个代码示例并不完整,你需要填充`...`处的数据加载和数据结构,以及一些辅助函数的定义(如evaluate_model_on_loader、calculate_PR_and_ROC)。此外,`confusion_matrix`和`plot_confusion_matrix`需要额外的库(例如matplotlib和sklearn.metrics),这里仅作为指导思想。实际运行时,请根据项目需求调整和完成剩余部分。
阅读全文