matlab柔性生产调度遗传算法
时间: 2023-11-29 21:46:24 浏览: 72
基于GA遗传优化算法的柔性生产调度是一种常见的优化算法,可以用于解决柔性生产调度问题。在Matlab中,可以通过编写代码来实现该算法。以下是一个简单的示例代码:
```matlab
% 定义问题
n = 10; % 任务数量
m = 5; % 机器数量
p = rand(n, m); % 任务处理时间
% 定义GA参数
popSize = 50; % 种群大小
maxGen = 100; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
% 初始化种群
pop = zeros(popSize, n);
for i = 1:popSize
pop(i, :) = randperm(n);
end
% 迭代
for gen = 1:maxGen
% 计算适应度
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = calcFitness(pop(i, :), p);
end
% 选择
newPop = zeros(popSize, n);
for i = 1:popSize
% 轮盘赌选择
idx1 = roulette(fitness);
idx2 = roulette(fitness);
% 交叉
if rand() < pc
[child1, child2] = crossover(pop(idx1, :), pop(idx2, :));
else
child1 = pop(idx1, :);
child2 = pop(idx2, :);
end
% 变异
if rand() < pm
child1 = mutation(child1);
end
if rand() < pm
child2 = mutation(child2);
end
% 添加到新种群
newPop(i*2-1, :) = child1;
newPop(i*2, :) = child2;
end
% 更新种群
pop = newPop;
end
% 输出结果
bestIdx = find(fitness == max(fitness));
bestSol = pop(bestIdx, :);
bestFitness = fitness(bestIdx);
disp(['Best solution: ', num2str(bestSol)]);
disp(['Best fitness: ', num2str(bestFitness)]);
% 计算适应度函数
function f = calcFitness(sol, p)
n = length(sol);
m = size(p, 2);
t = zeros(m, 1);
for i = 1:n
j = sol(i);
t(j) = t(j) + p(i, j);
end
f = max(t);
end
% 轮盘赌选择函数
function idx = roulette(fitness)
p = fitness / sum(fitness);
c = cumsum(p);
r = rand();
idx = find(c >= r, 1);
end
% 交叉函数
function [child1, child2] = crossover(parent1, parent2)
n = length(parent1);
idx = randperm(n, 2);
idx1 = min(idx);
idx2 = max(idx);
child1 = parent1;
child2 = parent2;
for i = idx1:idx2
tmp = child1(i);
child1(i) = child2(i);
child2(i) = tmp;
end
end
% 变异函数
function child = mutation(parent)
n = length(parent);
idx = randperm(n, 2);
idx1 = min(idx);
idx2 = max(idx);
child = parent;
tmp = child(idx1);
child(idx1) = child(idx2);
child(idx2) = tmp;
end
```
该代码实现了一个简单的柔性生产调度问题的GA遗传优化算法。其中,`calcFitness`函数计算了柔性生产调度问题的适应度,`roulette`函数实现了轮盘赌选择,`crossover`函数实现了交叉操作,`mutation`函数实现了变异操作。在主函数中,首先定义了问题的参数和GA算法的参数,然后初始化种群,进行迭代,最后输出结果。
阅读全文