Alexnet的pytorch的层
时间: 2023-07-30 10:04:48 浏览: 75
AlexNet with Pytorch
AlexNet在PyTorch中的层次结构如下:
```python
import torch
import torch.nn as nn
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2)
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
# 创建模型实例并打印模型结构
model = AlexNet()
print(model)
```
这个代码示例中,`self.features`部分定义了AlexNet的特征提取部分,包括卷积层、ReLU激活函数和最大池化层。`self.classifier`部分定义了AlexNet的全连接层分类器部分,包括线性层和ReLU激活函数。`forward`方法是前向传播过程,首先通过特征提取部分提取特征,然后将特征展平并通过分类器进行分类。
阅读全文