lenet手写数字识别
时间: 2023-09-14 18:13:32 浏览: 116
LeNet是一个经典的卷积神经网络模型,最早用于手写数字识别。它由Yann LeCun等人于1998年提出,是深度学习领域的开山之作。LeNet模型主要由卷积层、池化层和全连接层组成,可以用于手写数字识别等图像分类任务。
LeNet模型的结构如下:
1. 输入层:接收图像数据作为输入。
2. 卷积层:使用多个卷积核对输入图像进行特征提取。
3. 池化层:进行下采样,减少参数量和计算量。
4. 卷积层:继续进行特征提取。
5. 池化层:再次进行下采样。
6. 全连接层:将池化层的输出展平后,连接到一个全连接神经网络中。
7. 输出层:使用softmax激活函数输出分类结果。
LeNet模型在手写数字数据集上表现出色,可以通过训练来学习识别手写数字。在实际应用中,可以使用各种深度学习框架(如TensorFlow、PyTorch等)来实现和训练LeNet模型。
相关问题
pytorch的lenet手写数字识别
PyTorch的LeNet是一个经典的卷积神经网络,用于手写数字识别。它由两个卷积层和三个全连接层组成。其中,第一个卷积层包含6个5x5的卷积核,第二个卷积层包含16个5x5的卷积核。每个卷积层后面都跟着一个2x2的平均池化层。最后三个全连接层的输出分别是120、84和10,其中10是输出类别数。在训练过程中,可以使用交叉熵损失函数和随机梯度下降优化器。在实现过程中,可以使用PyTorch提供的MNIST数据集,并对数据进行预处理,如图像增广和标准化等操作,以提高模型的泛化能力和准确率。
pytorch的lenet手写数字识别代码
很抱歉,根据提供的引用内容,没有提到PyTorch的LeNet手写数字识别代码。```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义LeNet网络结构
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
# 定义训练参数
batch_size = 64
learning_rate = 0.01
num_epochs = 10
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型、损失函数和优化器
model = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
阅读全文