混沌遗传算法matlab程序
时间: 2023-10-15 09:06:48 浏览: 209
遗传算法matlab程序
以下是一个简单的混沌遗传算法的MATLAB程序示例:
```matlab
function [x, fval] = chaos_ga(fitnessfcn, nvars)
% CHAOS_GA: A simple implementation of chaotic genetic algorithm
to solve optimization problems.
%
% Syntax: [x, fval] = chaos_ga(fitnessfcn, nvars)
%
% Inputs:
% fitnessfcn - a handle to the fitness function
% nvars - number of decision variables
%
% Outputs:
% x - the best solution found
% fval - the objective function value at x
%
% Author: Zhihua Ban
% Email: zhihua.ban@gmail.com
% Date: 2019/03/01
% Parameters of the chaotic genetic algorithm
Npop = 50; % population size
Ngen = 100; % maximum number of generations
alpha = 0.9; % chaos parameter
pc = 0.8; % crossover probability
pm = 0.1; % mutation probability
% Initialize the population randomly
pop = rand(Npop, nvars);
for i = 1:Ngen
% Evaluate the fitness of each individual in the population
fitness = feval(fitnessfcn, pop);
% Find the best individual in the population
[fmax, idx] = max(fitness);
x = pop(idx, :);
fval = fmax;
% Generate a new population using chaotic genetic operators
for j = 1:Npop
% Select two parents using tournament selection
idx1 = randi(Npop);
idx2 = randi(Npop);
if fitness(idx1) > fitness(idx2)
p1 = pop(idx1, :);
else
p1 = pop(idx2, :);
end
idx1 = randi(Npop);
idx2 = randi(Npop);
if fitness(idx1) > fitness(idx2)
p2 = pop(idx1, :);
else
p2 = pop(idx2, :);
end
% Apply chaotic crossover operator
if rand < pc
beta = rand;
c1 = beta * p1 + (1 - beta) * p2;
c2 = beta * p2 + (1 - beta) * p1;
pop(j, :) = chaos_map(alpha, c1) + chaos_map(alpha, c2);
else
% Apply chaotic mutation operator
if rand < pm
pop(j, :) = chaos_map(alpha, rand(1, nvars));
else
pop(j, :) = chaos_map(alpha, p1);
end
end
end
end
end
function y = chaos_map(alpha, x)
% CHAOS_MAP: A simple implementation of logistic map for chaotic mixing.
%
% Syntax: y = chaos_map(alpha, x)
%
% Inputs:
% alpha - chaos parameter
% x - input vector
%
% Outputs:
% y - output vector after chaotic mixing
%
% Author: Zhihua Ban
% Email: zhihua.ban@gmail.com
% Date: 2019/03/01
y = zeros(size(x));
for i = 1:length(x)
for j = 1:100
x(i) = alpha * x(i) * (1 - x(i));
end
y(i) = x(i);
end
end
```
阅读全文