LSTM预测大豆价格代码
时间: 2024-06-20 09:01:06 浏览: 93
LSTM预测股价代码
在使用LSTM(长短期记忆网络)进行大豆价格预测时,你需要遵循机器学习和深度学习的基本步骤。以下是一个简化的Python代码示例,使用Keras库来构建一个LSTM模型:
```python
# 导入所需的库
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
# 假设你已经有了一个名为'data.csv'的大豆价格数据集
data = pd.read_csv('data.csv')
# 数据预处理
# 选择收盘价作为目标变量,其他列作为特征
data_close = data['Close']
data_close = data_close.values.reshape(-1, 1) # 将时间序列转换为适合LSTM的二维数组
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
data_close_scaled = scaler.fit_transform(data_close)
# 划分训练集和测试集
train_size = int(len(data_close_scaled) * 0.8)
train_data, test_data = data_close_scaled[0:train_size], data_close_scaled[train_size:]
# 创建训练数据的序列
def create_dataset(dataset, look_back=1):
X, Y = [], []
for i in range(len(dataset) - look_back - 1):
a = dataset[i:(i + look_back), 0]
X.append(a)
Y.append(dataset[i + look_back, 0])
return np.array(X), np.array(Y)
look_back = 5 # 你可以根据需要调整这个参数
X_train, y_train = create_dataset(train_data, look_back)
X_test, y_test = create_dataset(test_data, look_back)
# 创建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dropout(0.2))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(X_train, y_train, epochs=100, batch_size=64)
# 预测并评估
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)
# 可视化结果
import matplotlib.pyplot as plt
plt.plot(data_close[test_size:], label='Actual')
plt.plot(predictions, label='Predicted')
plt.legend()
plt.show()
阅读全文