使用pytorch实现基于CRF的CoNLL-2003命名实体识别,请给出完整代码
时间: 2024-12-20 09:14:56 浏览: 41
基于pytorch的bert-bilstm-crf中文命名实体识别
在PyTorch中实现基于条件随机场(Conditional Random Field, CRF)的CoNLL-2003命名实体识别,首先需要安装必要的库,如`spacy`、`conll`、`torch`等。以下是一个简单的例子,展示了如何构建CRF层并将其应用到一个双向LSTM模型上:
```python
import torch
from torch import nn
import spacy
from conllu import parse_incr
from collections import defaultdict
# 定义CRF层
class ConditionalRandomField(nn.Module):
def __init__(self, num_tags, transitions=None):
super(ConditionalRandomField, self).__init__()
if transitions is None:
# 初始化默认的转移概率矩阵
transitions = torch.zeros(num_tags, num_tags)
self.transitions = nn.Parameter(transitions)
def forward(self, emissions, mask):
# emissions: (batch_size, seq_len, num_tags)
# mask: (batch_size, seq_len) 判断哪些位置是有标签的
batch_size, seq_len, _ = emissions.size()
# 计算分数
scores = emissions + self.transitions.view(1, -1).expand(batch_size, seq_len, num_tags)
scores = scores * mask.unsqueeze(-1).float()
# 状态序列的初始概率
init_scores = torch.log(torch.sum(torch.exp(scores[:, 0, :]), dim=1))
# 动态规划计算路径得分
v = torch.zeros(batch_size)
for i in range(1, seq_len):
next_scores = scores[:, i, :]
trans_score = self.transitions[range(batch_size), tag_seq[:, i - 1]]
v = v + torch.logsumexp(next_scores + trans_score.unsqueeze(1), dim=-1)
return init_scores, v
# 示例代码,假设我们已经有了一个预训练的词嵌入和一个双向LSTM模型
nlp = spacy.load('en_core_web_sm')
def get_bilstm_crf_model(input_dim, hidden_dim, num_tags):
lstm = nn.LSTM(input_dim, hidden_dim, bidirectional=True)
linear = nn.Linear(hidden_dim * 2, num_tags)
crf = ConditionalRandomField(num_tags)
model = nn.Sequential(lstm, linear, crf)
return model
# 假设输入数据和标签数据已经准备好了
inputs = ... # 形状应该是(batch_size, seq_len, input_dim)
tags = ... # 形状应该是(batch_size, seq_len)
# 将输入转换成合适的维度
input_emissions = ... # 使用词嵌入和编码后的向量得到发射概率
tag_seq, _ = ... # 序列化标签以便用于CRF
# 高效地创建mask,标记有效的位置
mask = torch.ones_like(tag_seq, dtype=torch.uint8)
mask[tag_seq == 'O'] = 0 # 标记非实体位置为0
model = get_bilstm_crf_model(input_dim, hidden_dim, num_tags)
output_scores, viterbi_path = model(input_emissions, mask)
# 对应于viterbi算法,找到最可能的路径
best_paths = viterbi_path.argmax(dim=1)
```
阅读全文