pytorch cifar10图像分类densenet
时间: 2023-09-02 12:10:41 浏览: 29
DenseNet是一种用于图像分类的深度学习模型,它在PyTorch CIFAR10图像分类项目中有相应的篇章和演示。你可以在B站上观看DenseNet的视频讲解,并在Colab上找到相应的演示代码。\[1\]此外,你还可以在GitHub上找到相关的资源和使用方法。\[3\]如果你对DenseNet的图像分类感兴趣,可以参考这些资源进行学习和实践。\[2\]
#### 引用[.reference_title]
- *1* *2* *3* [Pytorch CIFAR10 图像分类篇 汇总](https://blog.csdn.net/weixin_45508265/article/details/119285255)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
基于pytorch的DenseNet 11*11图像大小分类代码
以下是使用Pytorch实现基于DenseNet的11 * 11图像分类的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
# Define hyperparameters
num_epochs = 50
batch_size = 128
learning_rate = 0.01
num_classes = 10
num_layers_per_block = 4
growth_rate = 32
compression_factor = 0.5
# Define data transforms
transform = transforms.Compose([
transforms.RandomCrop(11),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Load CIFAR10 dataset
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Define DenseNet block
class DenseNetBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseNetBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(nn.Sequential(
nn.BatchNorm2d(in_channels + i * growth_rate),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels + i * growth_rate, growth_rate, kernel_size=1, bias=False),
nn.BatchNorm2d(growth_rate),
nn.ReLU(inplace=True),
nn.Conv2d(growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
))
def forward(self, x):
for layer in self.layers:
out = layer(x)
x = torch.cat([x, out], 1)
return x
# Define DenseNet model
class DenseNet(nn.Module):
def __init__(self, num_classes, num_layers_per_block, growth_rate, compression_factor):
super(DenseNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 2*growth_rate, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(2*growth_rate),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
num_channels = 2 * growth_rate
self.num_blocks = len(num_layers_per_block)
for i, num_layers in enumerate(num_layers_per_block):
block = DenseNetBlock(num_channels, growth_rate, num_layers)
self.features.add_module("denseblock%d" % (i + 1), block)
num_channels += num_layers * growth_rate
if i != self.num_blocks - 1:
num_channels = int(num_channels * compression_factor)
trans = nn.Sequential(
nn.Conv2d(num_channels, num_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(num_channels),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2)
)
self.features.add_module("transition%d" % (i + 1), trans)
self.classifier = nn.Linear(num_channels, num_classes)
def forward(self, x):
x = self.features(x)
x = nn.functional.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)))
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# Initialize model and optimizer
model = DenseNet(num_classes, num_layers_per_block, growth_rate, compression_factor)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(num_epochs*0.5), int(num_epochs*0.75)], gamma=0.1)
# Train model
model.train()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Forward pass
outputs = model(images)
loss = nn.functional.cross_entropy(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print training progress
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# Update learning rate
scheduler.step()
# Test model
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Print test accuracy
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
这个示例代码基于DenseNet的思想,使用了一个堆叠的DenseNet块来构建网络。每个块由多个DenseNet层组成,每个层都通过连接前面所有层的方式进行连接,以最大化信息流动。这个代码还包括数据增强、学习率调度器等常用的训练技巧,以帮助提高模型的性能。
DCGAN-DenseNet图像分类代码
这里是一个使用PyTorch实现的DCGAN和DenseNet的图像分类代码示例:
DCGAN代码示例:
```python
import torch
import torch.nn as nn
# 定义生成器 Generator
class Generator(nn.Module):
def __init__(self, nz, ngf, nc):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 定义判别器 Discriminator
class Discriminator(nn.Module):
def __init__(self, nc, ndf):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1, 1).squeeze(1)
# 定义训练过程
def train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs):
for epoch in range(epochs):
for i, data in enumerate(dataloader, 0):
# 训练判别器
netD.zero_grad()
real_imgs = data[0].to(device)
b_size = real_imgs.size(0)
label = torch.full((b_size,), 1, dtype=torch.float, device=device)
output = netD(real_imgs).view(-1)
errD_real = criterion(output, label)
noise = torch.randn(b_size, nz, 1, 1, device=device)
fake_imgs = netG(noise)
label.fill_(0)
output = netD(fake_imgs.detach()).view(-1)
errD_fake = criterion(output, label)
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
# 训练生成器
netG.zero_grad()
label.fill_(1)
output = netD(fake_imgs).view(-1)
errG = criterion(output, label)
errG.backward()
optimizerG.step()
# 输出训练状态
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f'
% (epoch, epochs, i, len(dataloader),
errD.item(), errG.item()))
# 定义超参
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
nz = 100
ngf = 64
ndf = 64
epochs = 5
lr = 0.0002
beta1 = 0.5
batch_size = 128
image_size = 64
nc = 3
# 加载数据集
dataset = torchvision.datasets.CIFAR10(root='./data', download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.Resize(image_size),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=2)
# 初始化网络
netG = Generator(nz, ngf, nc).to(device)
netD = Discriminator(nc, ndf).to(device)
criterion = nn.BCELoss()
optimizerG = torch.optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
# 训练网络
train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs)
```
DenseNet代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义DenseNet模型
class DenseNet(nn.Module):
def __init__(self):
super(DenseNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Sequential(*self._make_dense_layers(64, 12)),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=8, stride=1),
)
self.classifier = nn.Linear(128, 10)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _make_dense_layers(self, in_channels, num_blocks):
layers = []
for i in range(num_blocks):
layers.append(Bottleneck(in_channels))
in_channels += 32
return layers
# 定义Bottleneck模块
class Bottleneck(nn.Module):
def __init__(self, in_channels):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(32)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = nn.ReLU(inplace=True)(out)
out = self.conv2(out)
out = self.bn2(out)
out = nn.ReLU(inplace=True)(out)
out = torch.cat((x, out), 1)
return out
# 训练模型
def train(net, trainloader, criterion, optimizer, device, epochs):
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
# 定义超参
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
epochs = 10
lr = 0.1
momentum = 0.9
batch_size = 128
image_size = 32
# 加载数据集
transform_train = transforms.Compose([
transforms.RandomCrop(image_size, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
# 初始化网络
net = DenseNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
# 训练网络
train(net, trainloader, criterion, optimizer, device, epochs)
```
这里的代码示例可以用来训练和测试CIFAR-10数据集的分类任务。注意要根据数据集的要求调整模型的输入和输出大小。
相关推荐











