yolov8读取图片代码
时间: 2023-09-06 22:12:59 浏览: 220
以下是使用YOLOv4读取图片的示例代码:
```python
import cv2
import numpy as np
# 加载模型和权重文件
net = cv2.dnn.readNetFromDarknet("yolov4.cfg", "yolov4.weights")
# 加载类别标签
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 读取图片
image = cv2.imread("test.jpg")
# 获取图片尺寸
height, width = image.shape[:2]
# 创建输入图像blob
blob = cv2.dnn.blobFromImage(image,1/255.0, (416, 416), swapRB=True, crop=False)
# 设置模型的输入
net.setInput(blob)
# 前向推断获取检测结果
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0]
相关问题
yolov8 识别图片质心 代码
很抱歉,目前并不存在yolov8这个版本,但是YOLOv4是目前最新的版本,可以用于图像识别任务。下面是使用YOLOv4识别图片质心的Python代码:
```python
import cv2
import numpy as np
# 加载YOLOv4模型
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# 加载图片
img = cv2.imread("test.jpg")
# 获取图片尺寸
height, width, _ = img.shape
# 构建输入图像的blob
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False)
# 将blob输入到模型中进行前向推理
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
# 解析输出结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 非极大值抑制
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 绘制边界框和标签
for i in indices:
i = i[0]
box = boxes[i]
x, y, w, h = box
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(img, 'Center', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用OpenCV的dnn模块加载YOLOv4模型,并对一张图片进行识别,最终在图片上绘制出识别出的目标的边界框和标签。其中,使用了Intersection over Union (IoU)算法进行非极大值抑制,可以有效地去除重叠的边界框。
yolov8预测图片的代码
### 使用YOLOv8进行图像预测
对于使用YOLOv8执行图像预测的任务,可以采用如下方式构建Python代码。此方法依赖于`ultralytics`库来加载预训练模型并利用该模型对指定图片路径下的图像进行推理。
```python
from ultralytics import YOLO # 导入必要的模块
model = YOLO('yolov8n.pt') # 加载YOLOv8 nano版本的预训练权重文件[^3]
results = model.predict(source='path/to/image.jpg', save=True, imgsz=640) # 对单张或多张图片进行预测,并保存结果
```
上述代码片段展示了如何加载一个特定架构大小(nano)的YOLOv8模型,并对其进行配置以便能够接收来自本地磁盘上某位置的一幅或多幅JPEG格式图片作为输入源。参数`imgsz`指定了输入图片会被调整至的目标尺寸,在这里设定为640像素;而选项`save=True`则指示程序自动将带有标注框的结果图存储下来。
此外,如果希望获取更详细的预测信息而非仅仅可视化后的图像,则可以通过访问`results`对象中的属性实现进一步的数据挖掘工作。例如:
```python
for result in results:
boxes = result.boxes.cpu().numpy() # 获取边界框坐标列表
scores = result.probs.cpu().numpy() # 获取置信度分数数组
classes = result.names # 类别名称字典
```
这段附加代码允许提取每次检测所得出的对象包围盒的位置、对应的类别标签及其识别概率等重要特征向量,从而支持后续分析或应用开发需求。
阅读全文
相关推荐














