yolov8读取图片代码
时间: 2023-09-06 20:12:59 浏览: 203
以下是使用YOLOv4读取图片的示例代码:
```python
import cv2
import numpy as np
# 加载模型和权重文件
net = cv2.dnn.readNetFromDarknet("yolov4.cfg", "yolov4.weights")
# 加载类别标签
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 读取图片
image = cv2.imread("test.jpg")
# 获取图片尺寸
height, width = image.shape[:2]
# 创建输入图像blob
blob = cv2.dnn.blobFromImage(image,1/255.0, (416, 416), swapRB=True, crop=False)
# 设置模型的输入
net.setInput(blob)
# 前向推断获取检测结果
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0]
相关问题
yolov8 识别图片质心 代码
很抱歉,目前并不存在yolov8这个版本,但是YOLOv4是目前最新的版本,可以用于图像识别任务。下面是使用YOLOv4识别图片质心的Python代码:
```python
import cv2
import numpy as np
# 加载YOLOv4模型
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# 加载图片
img = cv2.imread("test.jpg")
# 获取图片尺寸
height, width, _ = img.shape
# 构建输入图像的blob
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False)
# 将blob输入到模型中进行前向推理
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
# 解析输出结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 非极大值抑制
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 绘制边界框和标签
for i in indices:
i = i[0]
box = boxes[i]
x, y, w, h = box
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(img, 'Center', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用OpenCV的dnn模块加载YOLOv4模型,并对一张图片进行识别,最终在图片上绘制出识别出的目标的边界框和标签。其中,使用了Intersection over Union (IoU)算法进行非极大值抑制,可以有效地去除重叠的边界框。
yolov8运行程序代码
YOLOv8(You Only Look Once version 8)是一个流行的实时目标检测算法,它的核心思想是在单次前向传播过程中完成物体位置和类别预测。运行YOLOv8的代码通常涉及到以下几个步骤:
1. **安装依赖**:首先需要安装Python环境、深度学习库如TensorFlow或PyTorch以及YOLOv8的官方库yolov8-pytorch或yolov8-tf。
2. **下载模型权重**:从GitHub或其他提供预训练权重的地方下载适合自己需求的YOLOv8模型文件。
3. **加载模型**:使用对应的库函数加载模型,并设置输入大小等配置。
```python
import cv2
from yolov8 import YOLO
# 加载模型
yolo = YOLO(weights='path/to/yolov8.weights', config='path/to/yolov8.cfg')
```
4. **读取和处理图像**:读取图片,对其进行预处理以便于输入到模型中。
```python
image = cv2.imread('image.jpg')
outputs = yolo.detect(image)
```
5. **解析输出**:获取模型预测出的目标框、类别和置信度。
6. **显示结果**:将检测结果显示在原始图像上。
```python
for box in outputs:
label, score, left, top, right, bottom = box
# 根据实际需求画出边框和文字
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
cv2.putText(image, f'{label} {score:.2f}', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.imshow('Detection Results', image)
cv2.waitKey(0) # 等待按键,按任意键关闭窗口
```
阅读全文