哈夫曼编码MATLAB
时间: 2023-10-18 15:06:16 浏览: 212
好的,以下是哈夫曼编码的MATLAB代码:
```matlab
function [dict, avglen] = huffmandict(symbols, prob)
% HUFFMANDICT Generate a variable-length Huffman code dictionary.
% [DICT, AVGLEN] = HUFFMANDICT(SYMBOLS, PROB) generates a variable-length
% Huffman code dictionary for the input symbols based on their probability
% of occurrence. SYMBOLS is a vector of distinct symbols, and PROB is a
% corresponding vector of probabilities. DICT is a cell array of symbol
% codes, and AVGLEN is the average length of a code word.
%
% Example:
% symbols = {'A', 'B', 'C', 'D', 'E'};
% prob = [0.35, 0.2, 0.15, 0.15, 0.15];
% [dict, avglen] = huffmandict(symbols, prob);
%
% See also HUFFMANENCODE, HUFFMANDECODE.
n = length(symbols);
if n ~= length(prob)
error('symbols and prob must be the same length.');
end
% Sort symbols and probabilities in descending order of probability.
[prob, sortIndex] = sort(prob, 'descend');
symbols = symbols(sortIndex);
% Initialize the dictionary with each symbol as its own codeword.
dict = cell(n, 1);
for i = 1:n
dict{i} = symbols{i};
end
% Build the Huffman tree.
while n > 1
% Combine the two symbols with lowest probability.
newSymbol = {symbols{n-1}, symbols{n}};
newProb = [prob(n-1), prob(n)];
n = n - 1;
% Insert the new combined symbol and probability into the sorted lists.
k = find(prob(1:n-1) <= newProb(1), 1, 'last') + 1;
prob(k+1:n+1) = prob(k:n);
symbols(k+1:n+1) = symbols(k:n);
prob(k) = newProb(1);
symbols{k} = newSymbol;
prob(k+1) = newProb(2);
% Update the dictionary.
dict{k} = strcat('0', dict{k});
dict{k+1} = strcat('1', dict{k+1});
end
% Calculate the average length of a code word.
avglen = 0;
for i = 1:length(dict)
avglen = avglen + prob(i)*length(dict{i});
end
end
```
阅读全文