matlab算凸轮最大压力角
时间: 2024-08-14 15:09:32 浏览: 118
在MATLAB中计算凸轮机构的最大压力角通常涉及到理论力学和凸轮设计的知识。凸轮的压力角是指从凸轮轮廓线上某一点切线方向到该点速度方向之间的夹角,它影响着机构的接触应力和磨损情况。
以下是基本步骤:
1. **理解问题**: 确定凸轮的设计参数,如基圆半径、压力角范围、推杆运动规律等。
2. **建立模型**: 使用MATLAB的符号数学工具箱(Symbolic Math Toolbox),可以构建凸轮轮廓函数并表示速度矢量。
3. **求导**: 对凸轮轮廓函数和速度函数求导,得到速度向量的方向。
4. **计算压力角**: 求切线方向与速度方向的夹角,这通常是通过数值方法(例如梯度下降或优化算法)找到函数值和梯度最大的点来实现。
5. **边界条件检查**: 如果有特定的边界条件(例如最小压力角要求),可能需要对搜索过程进行调整。
6. **结果验证**: 可能还需要通过有限元分析(Finite Element Analysis,FEA)软件进行仿真验证结果的准确性。
相关问题
用Matlab绘制推程为简谐运动,回程为等减速运动的凸轮,要求基圆半径80mm,滚子半径10mm,偏置距离10mm,形成距离30mm,角速度0.08mm,推成运动角130°,远休止角25°,回城运动角145°,进休止角60°,从动件长度50mm,要求图中标出各个从动件位置的压力角,标出最大压力角以及最小压力角的位置,使Matlab最终实现凸轮廓线显示的gif图和压力角a的变化曲线的gif图,并给出最大最小压力角值。
好的,我明白了您的问题。这是一个比较复杂的机械设计问题,需要一定的时间和技术才能完成。我将为您提供一个大概的解决思路。
首先,我们需要确定凸轮的几何参数,如基圆半径、滚子半径、偏置距离、形成距离等。根据题目的要求,基圆半径为80mm,滚子半径为10mm,偏置距离为10mm,形成距离为30mm。这些参数可以用Matlab中的变量进行定义。
其次,我们需要确定凸轮的运动规律,即推程为简谐运动,回程为等减速运动。根据题目的要求,角速度为0.08mm,推成运动角130°,远休止角25°,回城运动角145°,进休止角60°。这些参数也可以用Matlab中的变量进行定义。
接下来,我们可以使用Matlab中的函数绘制凸轮的轮廓线。具体的步骤如下:
1. 定义凸轮的参数,如基圆半径、滚子半径、偏置距离、形成距离等。
2. 定义凸轮的运动规律,如推程为简谐运动,回程为等减速运动。
3. 根据凸轮的运动规律,计算凸轮的角度和半径。
4. 根据凸轮的角度和半径,计算凸轮的坐标。
5. 绘制凸轮的轮廓线。
6. 标注凸轮的各个从动件位置的压力角。
7. 绘制压力角a的变化曲线。
8. 利用Matlab中的函数生成凸轮轮廓线的gif图和压力角a的变化曲线的gif图。
最后,我们可以得到凸轮的轮廓线以及压力角a的变化曲线,并且标出最大压力角和最小压力角的位置。最大压力角和最小压力角的值也可以通过压力角a的变化曲线得到。
以上是一个大致的解决思路,具体的实现需要根据实际情况进行调整。
用Matlab绘制推程为简谐运动,回程为等减速运动的凸轮,要求基圆半径80mm,滚子半径10mm,偏置距离10mm,形成距离30mm,角速度0.08mm,推成运动角130°,远休止角25°,回城运动角145°,进休止角60°,从动件长度30mm,要求图中标出各个从动件位置的压力角,标出最大压力角以及最小压力角的位置,从而使Matlab最终实现凸轮廓线显示变化的gif图和压力角a的变化曲线的gif图,并给出最大最小压力角值。
这个问题比较复杂,需要进行凸轮设计和Matlab编程。以下是大致的步骤:
1. 根据所给的凸轮参数,计算凸轮的各个关键点坐标,例如推程、回程的起始点、终止点、顶点等等。
2. 根据滚子半径和偏置距离,计算从动件的运动轨迹,并在Matlab中绘制出来。
3. 计算从动件在每个位置的压力角,并在Matlab中标出。
4. 找出最大和最小压力角的位置,并计算其值。
5. 利用Matlab的动画功能,将凸轮轮廓线的变化和压力角的变化分别绘制成gif图。
下面是一个凸轮设计和Matlab绘图的参考代码,仅供参考:
```matlab
% 凸轮参数
Rp = 80; % 基圆半径
R = 10; % 滚子半径
e = 10; % 偏置距离
h = 30; % 形成距离
w = 0.08; % 角速度
theta1 = 130 / 180 * pi; % 推程运动角
theta2 = 25 / 180 * pi; % 远休止角
theta3 = 145 / 180 * pi; % 回程运动角
theta4 = 60 / 180 * pi; % 进休止角
% 计算各个关键点坐标
x1 = Rp * cos(theta1);
y1 = Rp * sin(theta1);
x2 = x1 + h * cos(theta1);
y2 = y1 + h * sin(theta1);
x3 = (Rp - e - R) * cos(theta2);
y3 = (Rp - e - R) * sin(theta2);
x4 = (Rp - e - R) * cos(theta4);
y4 = -(Rp - e - R) * sin(theta4);
x5 = (Rp - e - R) * cos(theta3);
y5 = -(Rp - e - R) * sin(theta3);
x6 = x5 - h * cos(theta3);
y6 = y5 - h * sin(theta3);
x7 = Rp * cos(theta2);
y7 = Rp * sin(theta2);
% 绘制凸轮轮廓线
theta = linspace(0, 2*pi, 1000);
x = Rp * cos(theta);
y = Rp * sin(theta);
for i = 1:length(theta)
if theta(i) >= 0 && theta(i) <= theta1
x(i) = (Rp + h) * cos(theta(i));
y(i) = (Rp + h) * sin(theta(i));
elseif theta(i) > theta1 && theta(i) <= pi - theta2
x(i) = x1 + h * cos(theta1) - R * cos(theta(i) - theta1 + asin((R + e)/h));
y(i) = y1 + h * sin(theta1) + R * sin(theta(i) - theta1 + asin((R + e)/h));
elseif theta(i) > pi - theta2 && theta(i) <= pi + theta2
x(i) = x3 + R * cos(theta(i) - pi + theta2 - asin((R + e)/h));
y(i) = y3 - R * sin(theta(i) - pi + theta2 - asin((R + e)/h));
elseif theta(i) > pi + theta2 && theta(i) <= 2*pi - theta3
x(i) = x4 + R * cos(theta(i) - pi - theta2 + asin((R + e)/h));
y(i) = y4 + R * sin(theta(i) - pi - theta2 + asin((R + e)/h));
elseif theta(i) > 2*pi - theta3 && theta(i) <= 2*pi - theta2
x(i) = x5 - h * cos(theta3) + R * cos(theta(i) - 2*pi + theta3 - asin((R + e)/h));
y(i) = y5 - h * sin(theta3) - R * sin(theta(i) - 2*pi + theta3 - asin((R + e)/h));
elseif theta(i) > 2*pi - theta2 && theta(i) <= 2*pi
x(i) = x6 - R * cos(theta(i) - 2*pi + theta2 - asin((R + e)/h));
y(i) = y6 + R * sin(theta(i) - 2*pi + theta2 - asin((R + e)/h));
end
end
plot(x, y);
axis equal;
% 绘制从动件运动轨迹和压力角
L = 30; % 从动件长度
x = zeros(1, 1000);
y = zeros(1, 1000);
alpha = zeros(1, 1000);
for i = 1:length(theta)
if theta(i) >= 0 && theta(i) <= theta1
x(i) = (Rp + h) * cos(theta(i));
y(i) = (Rp + h) * sin(theta(i));
alpha(i) = atan(((Rp + h) * sin(theta(i))) / L);
elseif theta(i) > theta1 && theta(i) <= pi - theta2
x(i) = x1 + h * cos(theta1) - R * cos(theta(i) - theta1 + asin((R + e)/h));
y(i) = y1 + h * sin(theta1) + R * sin(theta(i) - theta1 + asin((R + e)/h));
alpha(i) = atan((y(i) - y1 - h * sin(theta1)) / (x(i) - x1 - h * cos(theta1))) - asin((R + e) / sqrt((x(i) - x1 - h * cos(theta1))^2 + (y(i) - y1 - h * sin(theta1))^2));
elseif theta(i) > pi - theta2 && theta(i) <= pi + theta2
x(i) = x3 + R * cos(theta(i) - pi + theta2 - asin((R + e)/h));
y(i) = y3 - R * sin(theta(i) - pi + theta2 - asin((R + e)/h));
alpha(i) = atan((y(i) - y3) / (x(i) - x3)) - asin((R + e) / sqrt((x(i) - x3)^2 + (y(i) - y3)^2));
elseif theta(i) > pi + theta2 && theta(i) <= 2*pi - theta3
x(i) = x4 + R * cos(theta(i) - pi - theta2 + asin((R + e)/h));
y(i) = y4 + R * sin(theta(i) - pi - theta2 + asin((R + e)/h));
alpha(i) = atan((y(i) - y4) / (x(i) - x4)) - asin((R + e) / sqrt((x(i) - x4)^2 + (y(i) - y4)^2));
elseif theta(i) > 2*pi - theta3 && theta(i) <= 2*pi - theta2
x(i) = x5 - h * cos(theta3) + R * cos(theta(i) - 2*pi + theta3 - asin((R + e)/h));
y(i) = y5 - h * sin(theta3) - R * sin(theta(i) - 2*pi + theta3 - asin((R + e)/h));
alpha(i) = atan((y(i) - y5 - h * sin(theta3)) / (x(i) - x5 + h * cos(theta3))) - asin((R + e) / sqrt((x(i) - x5 + h * cos(theta3))^2 + (y(i) - y5 - h * sin(theta3))^2));
elseif theta(i) > 2*pi - theta2 && theta(i) <= 2*pi
x(i) = x6 - R * cos(theta(i) - 2*pi + theta2 - asin((R + e)/h));
y(i) = y6 + R * sin(theta(i) - 2*pi + theta2 - asin((R + e)/h));
alpha(i) = atan((y(i) - y6) / (x(i) - x6)) - asin((R + e) / sqrt((x(i) - x6)^2 + (y(i) - y6)^2));
end
end
hold on;
plot(x, y);
scatter(x(1), y(1), 'filled');
scatter(x(end), y(end), 'filled');
hold off;
xlabel('x');
ylabel('y');
title('Motion trajectory of follower');
axis equal;
figure;
plot(theta, alpha / pi * 180);
xlabel('theta');
ylabel('pressure angle');
title('Pressure angle of follower');
[max_alpha, max_index] = max(alpha);
[min_alpha, min_index] = min(alpha);
fprintf('Max pressure angle: %.2f at theta = %.2f\n', max_alpha / pi * 180, theta(max_index) / pi * 180);
fprintf('Min pressure angle: %.2f at theta = %.2f\n', min_alpha / pi * 180, theta(min_index) / pi * 180);
```
这段代码会绘制出凸轮的轮廓线、从动件的运动轨迹和压力角的变化曲线,以及计算出最大和最小压力角的位置和值。由于压力角的计算比较复杂,需要根据凸轮的不同部分分别进行计算,所以代码比较长。你可以根据自己的需要对其进行修改和优化。
阅读全文