tensorflow 残差神经网络
时间: 2023-11-20 18:54:34 浏览: 127
残差神经网络是一种深度神经网络,它通过跳过某些层的计算来解决深度神经网络中的梯度消失问题。在TensorFlow中,可以使用tf.keras.layers中的ResNet模块来构建残差神经网络。下面是一个简单的示例代码:
```python
import tensorflow as tf
inputs = tf.keras.Input(shape=(28, 28, 1))
x = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
residual = tf.keras.layers.Conv2D(64, 1, strides=2, padding='same')(x)
x = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Conv2D(128, 1, strides=2, padding='same')(x)
x = tf.keras.layers.add([x, residual])
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
```
这个模型包含了两个残差块,每个残差块包含了两个卷积层和一个跳跃连接。在训练时,可以使用标准的tf.keras.Model.compile和tf.keras.Model.fit函数来编译和训练模型。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)