cubeIDE生成STM32F103文件
时间: 2023-12-11 12:05:01 浏览: 108
1. 打开cubeIDE,选择“新建项目”。
2. 选择“STM32 MCU项目”,选择芯片型号为STM32F103C8T6。
3. 在“配置”选项卡中,选择“系统时钟配置”,根据需要配置时钟源和时钟分频。
4. 在“配置”选项卡中,选择“GPIO配置”,配置GPIO口。
5. 在“配置”选项卡中,选择“串口配置”,配置串口参数。
6. 在“配置”选项卡中,选择“中断配置”,配置中断优先级和中断服务函数。
7. 在“工程”视图中,右键单击“Src”文件夹,选择“新建C文件”。
8. 编写应用程序代码。
9. 在“工程”视图中,右键单击“工程名称”,选择“生成代码”。
10. 在“工程”视图中,右键单击“Debug”文件夹,选择“新建配置”,选择调试器型号和连接方式。
11. 在“工程”视图中,右键单击“Debug”文件夹,选择“调试配置”,配置调试器参数。
12. 连接STM32F103开发板,点击“Debug”按钮进行调试。
相关问题
stm32f103c8t6通过stm32cubeide正弦波代码
在STM32CubeIDE中,您可以使用HAL库来生成正弦波。下面是一个使用STM32F103C8T6微控制器和STM32CubeIDE生成正弦波的示例代码:
```c
#include "main.h"
#include "stm32f1xx_hal.h"
#include "math.h"
#define DAC_RESOLUTION 4095 // DAC 分辨率
#define DAC_OUTPUT_VOLTAGE 3.3 // DAC 输出电压
DAC_HandleTypeDef hdac;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DAC_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DAC_Init();
while (1)
{
// 生成正弦波
for (uint16_t i = 0; i < DAC_RESOLUTION; i++)
{
double angle = 2 * M_PI * i / DAC_RESOLUTION;
uint16_t value = (DAC_OUTPUT_VOLTAGE / 2) * (sin(angle) + 1); // 计算DAC输出值
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, value);
HAL_Delay(1); // 控制正弦波的频率
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
__HAL_RCC_AFIO_CLK_ENABLE();
}
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig;
__HAL_RCC_DAC_CLK_ENABLE();
hdac.Instance = DAC;
HAL_DAC_Init(&hdac);
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1);
}
```
注意:此示例代码假设您已经在STM32CubeMX中配置了相应的引脚和时钟设置,并生成了代码。您需要将此代码添加到生成的主代码文件中,并根据需要进行修改。此代码通过DAC输出生成正弦波,使用的是DAC通道1。您可以调整DAC_OUTPUT_VOLTAGE和DAC_RESOLUTION的值来控制输出电压和DAC的分辨率。
STM32F103 cubeide串口通讯配置
你可以按照以下步骤在STM32F103上配置串口通信:
1. 打开CubeIDE,并创建一个新STM32项目。
2. 在"Pinout & Configuration"视图中,选择一个可用的USART引脚,并将其分配给串口通信。
3. 在"Configuration"选项卡中,找到并打开"USARTx Configuration"(x代表你选择的USART号)。
4. 在"Mode"字段中选择通信模式,可以是异步模式(UART)或同步模式(SPI/I2S)。
5. 配置波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和奇偶校验位(Parity)等通信参数。
6. 根据需求,配置硬件流控制(Hardware Flow Control)和使能接收和发送中断。
7. 在"NVIC Settings"选项卡中,使能相应的中断。
8. 生成代码并下载到STM32F103上。
9. 在代码中使用相应的库函数来进行串口通信操作,如发送数据、接收数据等。
这样,你就完成了STM32F103上串口通信的配置。记得根据具体需求进行适当的修改和调试。希望对你有所帮助!
阅读全文