echo /public/home/liubl/epoch-4.15.5/epoch2d/Data | mpirun /public/home/liubl/epoch-4.15.5/epoch2d/bin/epoch2d
时间: 2024-01-15 17:19:58 浏览: 150
根据提供的引用内容,您提供的是一个命令行指令。该指令的作用是在命令行中执行一个名为`epoch2d`的可执行文件,并传递了一个参数`/public/home/liubl/epoch-4.15.5/epoch2d/Data`给该可执行文件。
根据提供的信息,我们可以将该命令行指令拆分为以下两部分:
1. 可执行文件路径:`/public/home/liubl/epoch-4.15.5/epoch2d/bin/epoch2d`
2. 参数:`/public/home/liubl/epoch-4.15.5/epoch2d/Data`
您可以在命令行中执行该指令,以查看其结果。
相关问题
生成一个 pytorch ddp 训练和验证 resnet18 的例子,并且代码中 ddp 使用 mpirun 的方式启动
以下是 Pytorch DDP 训练和验证 ResNet18 的例子,使用 mpirun 启动 DDP:
```python
import torch
import torch.nn as nn
import torch.distributed as dist
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.nn.parallel import DistributedDataParallel as DDP
import argparse
def train(rank, world_size):
# 初始化进程间通信
dist.init_process_group(
backend='mpi',
init_method='env://'
)
# 声明 ResNet18 模型和损失函数
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(512, 1000),
nn.ReLU(inplace=True),
nn.Linear(1000, 10)
)
criterion = nn.CrossEntropyLoss()
# 将模型和损失分配到指定的 GPU 上
torch.cuda.set_device(rank)
model.cuda(rank)
criterion.cuda(rank)
# 将模型转化为 DDP 模型
model = DDP(model, device_ids=[rank])
# 加载训练数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
transform=transforms.ToTensor(),
download=True
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=256,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=train_sampler
)
# 加载测试数据集
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=transforms.ToTensor(),
download=True
)
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset,
num_replicas=world_size,
rank=rank
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=256,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=test_sampler
)
# 设置优化器和学习率调度器
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [50, 100, 150], gamma=0.1)
# 训练和验证
for epoch in range(200):
# 训练
train_sampler.set_epoch(epoch)
for i, (images, labels) in enumerate(train_loader):
# 使用 GPU 计算损失
images = images.cuda(rank, non_blocking=True)
labels = labels.cuda(rank, non_blocking=True)
outputs = model(images)
loss = criterion(outputs, labels)
# 梯度下降
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 验证
test_loss = 0.0
test_correct = 0.0
with torch.no_grad():
test_sampler.set_epoch(epoch)
for i, (images, labels) in enumerate(test_loader):
# 使用 GPU 计算损失和准确率
images = images.cuda(rank, non_blocking=True)
labels = labels.cuda(rank, non_blocking=True)
outputs = model(images)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs.data, 1)
test_loss += loss.item()
test_correct += preds.eq(labels.data.view_as(preds)).sum().item()
# 打印训练和验证的结果
print(f"Rank {rank}, epoch {epoch}: Train Loss = {loss.item()}, Test Loss = {test_loss/len(test_loader)}, Test Accuracy = {test_correct/len(test_loader.dataset)}")
# 更新学习率
scheduler.step()
if __name__ == '__main__':
# 解析参数
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int)
args = parser.parse_args()
# 启动进程
torch.distributed.init_process_group(backend='mpi')
torch.cuda.set_device(args.local_rank)
world_size = torch.distributed.get_world_size()
train(args.local_rank, world_size)
```
使用以下命令在 2 个进程上启动 DDP 训练:
```
mpirun -n 2 python train.py --local_rank $OMPI_COMM_WORLD_LOCAL_RANK
```
请确保已经正确设置环境变量``OMP_PROC_BIND``和``OMPI_MCA_btl_vader_single_copy_mechanism=none``。
编写MPI程序复现PS-worker算法
PS-worker算法是一种分布式机器学习算法,使用MPI进行实现比较方便。下面是一个简单的PS-worker程序示例:
```c
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define N 100 // 数据总数
#define K 10 // 模型参数个数
#define M 10 // 每个worker处理的数据个数
#define EPOCHS 100 // 训练轮数
#define ALPHA 0.01 // 学习率
// 生成随机数据
void generate_data(float* X, float* y, int n, int k)
{
for (int i = 0; i < n * k; i++) {
X[i] = (float)rand() / RAND_MAX;
}
for (int i = 0; i < n; i++) {
float sum = 0;
for (int j = 0; j < k; j++) {
sum += X[i * k + j];
}
y[i] = sum > k / 2 ? 1.0 : 0.0;
}
}
// 计算sigmoid函数
float sigmoid(float x)
{
return 1.0 / (1.0 + exp(-x));
}
// 计算损失函数
float loss(float* X, float* y, float* w, int n, int k)
{
float sum = 0;
for (int i = 0; i < n; i++) {
float dot = 0;
for (int j = 0; j < k; j++) {
dot += X[i * k + j] * w[j];
}
sum += y[i] * log(sigmoid(dot)) + (1 - y[i]) * log(1 - sigmoid(dot));
}
return -sum / n;
}
int main(int argc, char** argv)
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
srand(rank + 1); // 每个进程使用不同的随机数种子
float* X = (float*)malloc(M * K * sizeof(float)); // 每个worker处理的数据
float* y = (float*)malloc(M * sizeof(float));
generate_data(X, y, M, K);
float* w = (float*)malloc(K * sizeof(float)); // 模型参数
for (int i = 0; i < K; i++) {
w[i] = 0;
}
float* grad = (float*)malloc(K * sizeof(float)); // 梯度
for (int i = 0; i < K; i++) {
grad[i] = 0;
}
int n_workers = size - 1; // worker数量
int n_batches = N / (M * n_workers); // 每个worker处理的batch数量
int n_samples = n_batches * M; // 每个worker处理的数据总数
int n_epochs = EPOCHS;
if (rank == 0) { // PS进程
printf("Start training...\n");
double start_time = MPI_Wtime();
for (int epoch = 0; epoch < n_epochs; epoch++) {
for (int i = 1; i <= n_workers; i++) {
MPI_Send(w, K, MPI_FLOAT, i, 0, MPI_COMM_WORLD); // 发送参数
}
for (int i = 1; i <= n_workers; i++) {
MPI_Recv(grad, K, MPI_FLOAT, i, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // 接收梯度
for (int j = 0; j < K; j++) {
w[j] -= ALPHA * grad[j]; // 更新参数
}
}
printf("Epoch %d loss: %f\n", epoch, loss(X, y, w, N, K));
}
double end_time = MPI_Wtime();
printf("Training finished. Time: %f seconds\n", end_time - start_time);
} else { // worker进程
for (int epoch = 0; epoch < n_epochs; epoch++) {
for (int batch = 0; batch < n_batches; batch++) {
MPI_Recv(w, K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE); // 接收参数
for (int i = 0; i < M; i++) {
float dot = 0;
for (int j = 0; j < K; j++) {
dot += X[i * K + j] * w[j];
}
float error = y[i] - sigmoid(dot);
for (int j = 0; j < K; j++) {
grad[j] += error * X[i * K + j]; // 计算梯度
}
}
}
MPI_Send(grad, K, MPI_FLOAT, 0, 1, MPI_COMM_WORLD); // 发送梯度
for (int i = 0; i < K; i++) {
grad[i] = 0; // 清零梯度
}
}
}
MPI_Finalize();
free(X);
free(y);
free(w);
free(grad);
return 0;
}
```
该程序使用了一个PS进程和多个worker进程,PS进程负责发送模型参数和接收梯度,worker进程负责接收模型参数、计算梯度并发送给PS进程。每个worker进程处理M个样本,并使用随机梯度下降算法更新模型参数。
该程序可以在MPI环境下进行编译和运行,比如使用mpicc编译:
```
mpicc -o ps_worker ps_worker.c
```
然后使用mpirun运行:
```
mpirun -n 5 ./ps_worker
```
其中-n参数指定进程数量,这里使用了5个进程(1个PS进程和4个worker进程)。该程序会进行100轮训练,并输出每轮训练的损失函数值。
阅读全文