飞桨库中如何使用lstm
时间: 2023-11-27 12:45:00 浏览: 77
在飞桨库中使用LSTM,可以使用paddle.fluid.dygraph.LSTM类。该类是一个LSTM层,可以在动态图模式下使用。以下是使用LSTM进行文本分类的示例代码:
```
import paddle.fluid as fluid
import numpy as np
class LSTMModel(fluid.dygraph.Layer):
def __init__(self, vocab_size, num_classes, emb_dim, hidden_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.embedding = fluid.dygraph.Embedding(size=[vocab_size, emb_dim], dtype='float32')
self.lstm = fluid.dygraph.LSTMCell(input_size=emb_dim, hidden_size=hidden_size)
self.fc = fluid.dygraph.Linear(input_dim=hidden_size, output_dim=num_classes)
def forward(self, inputs):
inputs = self.embedding(inputs)
batch_size = inputs.shape[0]
state = self.lstm.get_initial_states(batch_size)
for i in range(inputs.shape[1]):
out, state = self.lstm(inputs[:, i, :], state)
out = self.fc(out)
return out
# 定义超参数
vocab_size = 10000
num_classes = 2
emb_dim = 128
hidden_size = 128
batch_size = 32
learning_rate = 0.001
epochs = 10
# 定义模型
model = LSTMModel(vocab_size, num_classes, emb_dim, hidden_size)
# 定义优化器
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=learning_rate, parameter_list=model.parameters())
# 开始训练
for epoch in range(epochs):
np.random.shuffle(train_corpus)
total_loss = 0
for i in range(0, len(train_corpus), batch_size):
batch_data = train_corpus[i:i+batch_size]
batch_size = len(batch_data)
inputs = np.zeros([batch_size, 500], dtype='int64')
labels = np.zeros([batch_size, 1], dtype='int64')
for j in range(batch_size):
inputs[j, :] = np.array([word_dict.get(word, 0) for word in batch_data[j][0].split()])
labels[j, 0] = batch_data[j][1]
inputs = fluid.dygraph.to_variable(inputs)
labels = fluid.dygraph.to_variable(labels)
logits = model(inputs)
loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, labels)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
total_loss += avg_loss.numpy()[0]
print("Epoch %d, loss=%.4f" % (epoch+1, total_loss))
```
阅读全文
相关推荐



















