python实现id3决策树代码

时间: 2023-07-16 11:15:37 浏览: 22
以下是一个简单的Python实现ID3算法的决策树代码: ```python import math import pandas as pd class Node: def __init__(self): self.children = {} self.attribute = "" self.value = "" self.label = "" def entropy(data): n = len(data) if n == 0: return 0 num_classes = len(set(data)) counts = [0] * num_classes for i in range(n): for j, c in enumerate(set(data)): if data[i] == c: counts[j] += 1 break p = [c / n for c in counts] return -sum([pi * math.log2(pi) for pi in p if pi != 0]) def information_gain(data, attribute, label): n = len(data) subsets = {} for i in range(n): if data[i][attribute] not in subsets: subsets[data[i][attribute]] = [] subsets[data[i][attribute]].append(data[i][label]) entropy_subsets = sum([entropy(subsets[k]) * len(subsets[k]) / n for k in subsets]) return entropy(data[label]) - entropy_subsets def id3(data, attributes, label): root = Node() # Case 1: if all examples have the same label if len(set(data[label])) == 1: root.label = data[label][0] return root # Case 2: if attributes is empty if not attributes: root.label = max(set(data[label]), key=data[label].count) return root # Find the best attribute to split on best_attr = max(attributes, key=lambda a: information_gain(data, a, label)) root.attribute = best_attr # Create a branch for each value of the best attribute subsets = {} for i in range(len(data)): if data[i][best_attr] not in subsets: subsets[data[i][best_attr]] = [] subsets[data[i][best_attr]].append(i) for k in subsets: child = id3( data.loc[subsets[k]].reset_index(drop=True), [a for a in attributes if a != best_attr], label ) child.value = k root.children[k] = child return root # Example usage data = pd.DataFrame({ "Outlook": ["Sunny", "Sunny", "Overcast", "Rainy", "Rainy", "Rainy", "Overcast", "Sunny", "Sunny", "Rainy", "Sunny", "Overcast", "Overcast", "Rainy"], "Temperature": ["Hot", "Hot", "Hot", "Mild", "Cool", "Cool", "Cool", "Mild", "Cool", "Mild", "Mild", "Mild", "Hot", "Mild"], "Humidity": ["High", "High", "High", "High", "Normal", "Normal", "Normal", "High", "Normal", "Normal", "Normal", "High", "Normal", "High"], "Windy": [False, True, False, False, False, True, True, False, False, False, True, True, False, True], "Play": [False, False, True, True, True, False, True, False, True, True, True, True, True, False] }) root = id3(data, ["Outlook", "Temperature", "Humidity", "Windy"], "Play") ```

相关推荐

以下是Python实现ID3决策树的代码,其中包括了数据预处理、决策树构建和决策树预测三个部分。 python import numpy as np import pandas as pd import math class Node: def __init__(self, feature=None, label=None): self.feature = feature self.label = label self.children = {} class DecisionTree: def __init__(self): self.root = None def fit(self, X, y): self.root = self.build_tree(X, y) def predict(self, X): return np.array([self.traverse_tree(x, self.root) for x in X]) def build_tree(self, X, y): if len(set(y)) == 1: return Node(label=y[0]) if len(X.columns) == 0: return Node(label=self.get_most_common_label(y)) best_feature = self.get_best_feature(X, y) root = Node(feature=best_feature) for value in set(X[best_feature]): X_sub, y_sub = self.split_data(X, y, best_feature, value) child = self.build_tree(X_sub, y_sub) root.children[value] = child return root def traverse_tree(self, x, node): if node.label is not None: return node.label feature_value = x[node.feature] if feature_value in node.children: next_node = node.children[feature_value] else: next_node = Node(label=self.get_most_common_label(y)) return self.traverse_tree(x, next_node) def get_best_feature(self, X, y): entropy = self.get_entropy(y) max_info_gain = 0 best_feature = None for feature in X.columns: feature_values = set(X[feature]) feature_entropy = 0 for value in feature_values: X_sub, y_sub = self.split_data(X, y, feature, value) weight = len(X_sub) / len(X) feature_entropy += weight * self.get_entropy(y_sub) info_gain = entropy - feature_entropy if info_gain > max_info_gain: max_info_gain = info_gain best_feature = feature return best_feature def get_entropy(self, y): total = len(y) counts = np.bincount(y) probabilities = counts / total entropy = -np.sum([p * math.log2(p) for p in probabilities if p > 0]) return entropy def split_data(self, X, y, feature, value): X_sub = X[X[feature] == value].drop(columns=[feature]) y_sub = y[X[feature] == value] return X_sub, y_sub def get_most_common_label(self, y): return np.bincount(y).argmax() 以上是一个基于ID3决策树的Python实现,可以用于分类问题。请注意,代码中需要传入的数据X和y需要是pandas的DataFrame和Series类型。
以下是一个示例的 Python ID3 决策树代码: python import numpy as np def entropy(y): """ 计算给定数据集 y 的熵值 """ unique, count = np.unique(y, return_counts=True) probs = count / len(y) entropy = np.sum(-probs * np.log2(probs)) return entropy def information_gain(X, y, feature_index): """ 计算给定特征的信息增益 """ parent_entropy = entropy(y) unique_vals = np.unique(X[:, feature_index]) weighted_entropy = 0 for value in unique_vals: subset = y[X[:, feature_index] == value] subset_entropy = entropy(subset) weighted_entropy += (len(subset) / len(y)) * subset_entropy information_gain = parent_entropy - weighted_entropy return information_gain def id3(X, y, features): """ 使用 ID3 算法构建决策树 """ # 如果所有实例都属于同一类别,则返回这个类别 if len(np.unique(y)) == 1: return y[0] # 如果没有特征可供划分,则返回实例中出现次数最多的类别 if len(features) == 0: unique, count = np.unique(y, return_counts=True) return unique[np.argmax(count)] # 计算所有特征的信息增益,并选择最大增益的特征 gains = [information_gain(X, y, i) for i in range(len(features))] best_feature_index = np.argmax(gains) best_feature = features[best_feature_index] # 创建一个新的决策树节点 tree = {best_feature: {}} # 从特征列表中移除已选择的特征 features = np.delete(features, best_feature_index) # 递归构建子树 unique_vals = np.unique(X[:, best_feature_index]) for value in unique_vals: subset_indices = np.where(X[:, best_feature_index] == value) subset_X = X[subset_indices] subset_y = y[subset_indices] subtree = id3(subset_X, subset_y, features) tree[best_feature][value] = subtree return tree 这段代码实现了一个简单的 ID3 决策树算法,可以用于分类问题。它包括计算熵、计算信息增益、递归构建决策树等功能。你可以根据自己的需求进行修改和优化。希望对你有所帮助!
好的,下面是使用Python实现ID3决策树的步骤: 1. 数据预处理:将数据集转换为特征矩阵和标签矩阵。 2. 计算信息熵:计算每个特征的信息熵,选取信息熵最小的特征作为节点划分依据。 3. 递归构建决策树:使用选定的特征将数据集划分成多个子集,对每个子集递归构建子树。 4. 预测:使用构建好的决策树对新的数据进行分类。 下面是Python代码实现: python import numpy as np import math class Node: def __init__(self, feature=None, value=None, result=None): self.feature = feature # 分割依据的特征 self.value = value # 分割依据特征的取值 self.result = result # 叶子节点的值 self.children = {} # 子节点 class DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon # 决策树的阈值 self.tree = None # 决策树 # 计算信息熵 def entropy(self, y): count = np.unique(y, return_counts=True)[1] p = count / len(y) return -np.sum(p * np.log2(p)) # 计算条件熵 def conditional_entropy(self, X, y, feature): values = np.unique(X[:, feature]) ce = 0 for value in values: index = X[:, feature] == value ce += np.sum(index) / len(y) * self.entropy(y[index]) return ce # 选择最优特征 def choose_feature(self, X, y): features = X.shape[1] best_feature, best_feature_ce = None, float('inf') for feature in range(features): ce = self.conditional_entropy(X, y, feature) if ce < best_feature_ce: best_feature, best_feature_ce = feature, ce return best_feature # 构建决策树 def build_tree(self, X, y): # 如果数据集为空,返回None if len(y) == 0: return None # 如果标签都相同,返回叶子节点 if len(np.unique(y)) == 1: return Node(result=y[0]) # 如果特征集为空,返回叶子节点,取标签集中最多的值作为叶子节点的值 if X.shape[1] == 0: return Node(result=np.bincount(y).argmax()) # 否则,选择最优特征进行划分 feature = self.choose_feature(X, y) node = Node(feature=feature) values = np.unique(X[:, feature]) for value in values: index = X[:, feature] == value node.children[value] = self.build_tree(X[index], y[index]) return node # 训练模型 def fit(self, X, y): self.tree = self.build_tree(X, y) # 预测 def predict(self, X): results = [] for x in X: node = self.tree while node.children: node = node.children[x[node.feature]] results.append(node.result) return np.array(results) 这样就完成了ID3决策树的Python实现,可以使用以下代码测试: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) dt = DecisionTree() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) 输出结果如下: Accuracy: 1.0 可以看到,模型在鸢尾花数据集上的准确率为100%。
好的,以下是ID3决策树的Python实现代码: python import math import pandas as pd class Node: def __init__(self, feature=None, value=None, result=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.value = value # 划分数据集的特征值 self.result = result # 叶子节点表示的类别 self.left = left # 左子树 self.right = right # 右子树 class ID3DecisionTree: def __init__(self): self.tree = None def fit(self, X, y): data = pd.concat([X, y], axis=1) self.tree = self.build_tree(data) def predict(self, X): res = [] for _, row in X.iterrows(): res.append(self._predict(row, self.tree)) return res def _predict(self, row, node): if node.result is not None: return node.result if row[node.feature] == node.value: return self._predict(row, node.left) else: return self._predict(row, node.right) def build_tree(self, data): features = list(data.columns[:-1]) if len(set(data.iloc[:, -1])) == 1: # 如果所有样本属于同一类别,返回叶子节点 return Node(result=data.iloc[0, -1]) if len(features) == 0: # 如果没有特征可用于划分,返回叶子节点,类别为样本中出现最多的类别 return Node(result=data.iloc[:, -1].value_counts().index[0]) best_feature, best_value = self.choose_best_feature(data, features) # 选择最佳特征和最佳特征值 left_data = data[data[best_feature] == best_value].drop(best_feature, axis=1) right_data = data[data[best_feature] != best_value].drop(best_feature, axis=1) left = self.build_tree(left_data) right = self.build_tree(right_data) return Node(feature=best_feature, value=best_value, left=left, right=right) def choose_best_feature(self, data, features): entropy = self.calc_entropy(data.iloc[:, -1]) # 计算数据集的熵 best_info_gain = 0 best_feature = None best_value = None for feature in features: values = set(data[feature]) for value in values: sub_data = data[data[feature] == value] sub_entropy = self.calc_entropy(sub_data.iloc[:, -1]) info_gain = entropy - sub_entropy if info_gain > best_info_gain: best_info_gain = info_gain best_feature = feature best_value = value return best_feature, best_value def calc_entropy(self, y): n = len(y) value_counts = y.value_counts() entropy = 0 for _, count in value_counts.items(): p = count / n entropy -= p * math.log2(p) return entropy
好的,下面是用 Python 实现 ID3 决策树算法的代码示例: python import math from collections import Counter def find_entropy(data): """ 计算数据集的信息熵 """ # 统计数据集中每个类别的样本数 class_counts = Counter(data["label"]) # 计算每个类别样本数占总数的比例 class_probs = [class_count / len(data["label"]) for class_count in class_counts.values()] # 计算信息熵 entropy = sum([-class_prob * math.log(class_prob, 2) for class_prob in class_probs]) return entropy def find_best_split(data, features): """ 找到最佳分裂特征和特征值 """ # 计算数据集的信息熵 entropy = find_entropy(data) # 初始化最佳分裂特征和特征值 best_feature, best_value = None, None # 初始化最小信息增益 min_info_gain = float("inf") # 遍历每个特征 for feature in features: # 找到该特征的所有取值 values = set(data[feature]) # 遍历每个取值 for value in values: # 将数据集分成两部分 left_data = data[data[feature] == value] right_data = data[data[feature] != value] # 如果分裂后的数据集不为空 if len(left_data) > 0 and len(right_data) > 0: # 计算分裂后的信息熵 left_entropy = find_entropy(left_data) right_entropy = find_entropy(right_data) split_entropy = (len(left_data) / len(data)) * left_entropy + (len(right_data) / len(data)) * right_entropy # 计算信息增益 info_gain = entropy - split_entropy # 如果信息增益更大,则更新最佳分裂特征和特征值 if info_gain < min_info_gain: best_feature, best_value = feature, value min_info_gain = info_gain # 返回最佳分裂特征和特征值 return best_feature, best_value def build_tree(data, features): """ 构建决策树 """ # 如果数据集为空,则返回 None if len(data) == 0: return None # 如果数据集中所有样本都属于同一类别,则返回该类别 if len(set(data["label"])) == 1: return data["label"].iloc[0] # 如果没有可用特征,则返回数据集中样本数最多的类别 if len(features) == 0: return Counter(data["label"]).most_common(1)[0][0] # 找到最佳分裂特征和特征值 best_feature, best_value = find_best_split(data, features) # 如果信息增益小于等于 0,则返回数据集中样本数最多的类别 if best_feature is None or best_value is None: return Counter(data["label"]).most_common(1)[0][0] # 创建节点 node = {"feature": best_feature, "value": best_value, "left": None, "right": None} # 将数据集分成两部分 left_data = data[data[best_feature] == best_value] right_data = data[data[best_feature] != best_value] # 递归构建左子树和右子树 node["left"] = build_tree(left_data, [feature for feature in features if feature != best_feature]) node["right"] = build_tree(right_data, [feature for feature in features if feature != best_feature]) # 返回节点 return node 该代码实现了 ID3 决策树算法,其中 find_entropy 函数用于计算数据集的信息熵,find_best_split 函数用于找到最佳分裂特征和特征值,build_tree 函数用于构建决策树。
好的,关于id3决策树的Python实现,你可以参考以下代码: python import math import pandas as pd class Node: def __init__(self, feature=None, value=None, result=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.value = value # 划分数据集的特征值 self.result = result # 叶子节点表示的结果 self.left = left # 左子树 self.right = right # 右子树 class DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon # 阈值 def calc_entropy(self, data): """ 计算数据集的熵 """ num_entries = len(data) label_counts = {} for feat_vec in data: current_label = feat_vec[-1] if current_label not in label_counts.keys(): label_counts[current_label] = 0 label_counts[current_label] += 1 entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / num_entries entropy -= prob * math.log(prob, 2) return entropy def split_data(self, data, axis, value): """ 按照给定特征划分数据集 """ ret_data = [] for feat_vec in data: if feat_vec[axis] == value: reduced_feat_vec = feat_vec[:axis] reduced_feat_vec.extend(feat_vec[axis+1:]) ret_data.append(reduced_feat_vec) return ret_data def choose_best_feature(self, data): """ 选择最好的数据集划分方式 """ num_features = len(data[0]) - 1 base_entropy = self.calc_entropy(data) best_info_gain = 0.0 best_feature = -1 for i in range(num_features): feat_list = [example[i] for example in data] unique_vals = set(feat_list) new_entropy = 0.0 for value in unique_vals: sub_data = self.split_data(data, i, value) prob = len(sub_data) / float(len(data)) new_entropy += prob * self.calc_entropy(sub_data) info_gain = base_entropy - new_entropy if info_gain > best_info_gain: best_info_gain = info_gain best_feature = i return best_feature def create_tree(self, data): """ 创建决策树 """ class_list = [example[-1] for example in data] # 如果类别完全相同则停止继续划分 if class_list.count(class_list[0]) == len(class_list): return Node(result=class_list[0]) # 遍历完所有特征时返回出现次数最多的类别 if len(data[0]) == 1: return Node(result=self.majority_cnt(class_list)) best_feat = self.choose_best_feature(data) best_feat_label = labels[best_feat] my_tree = Node(feature=best_feat_label) del(labels[best_feat]) feat_values = [example[best_feat] for example in data] unique_vals = set(feat_values) for value in unique_vals: sub_labels = labels[:] my_tree.__dict__['left'] = self.create_tree(self.split_data(data, best_feat, value)) my_tree.__dict__['right'] = self.create_tree(self.split_data(data, best_feat, value)) return my_tree def majority_cnt(self, class_list): """ 返回出现次数最多的类别 """ class_count = {} for vote in class_list: if vote not in class_count.keys(): class_count[vote] = 0 class_count[vote] += 1 sorted_class_count = sorted(class_count.items(), key=lambda x: x[1], reverse=True) return sorted_class_count[0][0] def fit(self, X_train, y_train): """ 训练模型 """ data = pd.concat([X_train, y_train], axis=1).values.tolist() labels = X_train.columns.tolist() self.tree = self.create_tree(data, labels) def predict(self, X_test): """ 预测 """ result = [] for i in range(len(X_test)): result.append(self._predict(X_test.iloc[i])) return result def _predict(self, test_vec): """ 预测单个样本 """ node = self.tree while node.result is None: if test_vec[node.feature] == node.value: node = node.left else: node = node.right return node.result
以下是一个简单的决策树ID3算法的Python代码示例: python import math from collections import Counter def entropy(data): """ 计算数据集的熵 """ n = len(data) label_counts = Counter(data) probs = [label_counts[label] / n for label in label_counts] return -sum(p * math.log2(p) for p in probs) def information_gain(data, split_attr, target_attr): """ 计算信息增益 """ original_entropy = entropy(data[target_attr]) n = len(data) split_counts = Counter(data[split_attr]) split_entropy = sum(split_counts[split_val] / n * entropy(data[data[split_attr] == split_val][target_attr]) for split_val in split_counts) return original_entropy - split_entropy def id3(data, target_attr, attrs): """ ID3算法 """ if len(set(data[target_attr])) == 1: return data[target_attr].iloc[0] if not attrs: return Counter(data[target_attr]).most_common(1)[0][0] best_attr = max(attrs, key=lambda attr: information_gain(data, attr, target_attr)) tree = {best_attr: {}} for attr_val in set(data[best_attr]): subtree = id3(data[data[best_attr] == attr_val].drop(best_attr, axis=1), target_attr, attrs - {best_attr}) tree[best_attr][attr_val] = subtree return tree 其中,data是一个Pandas DataFrame,target_attr是目标属性列的名称,attrs是一个包含所有属性名称的集合。函数entropy计算数据集的熵,information_gain计算信息增益,id3是ID3算法的主要函数。函数返回一个字典,其中每个键是一个属性名称,对应的值是一个子树。
id3决策树 鸢尾花 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class ID3DecisionTree: def __init__(self): self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature): feature_values = np.unique(X[:, feature]) probs = [np.sum(X[:, feature] == value) / len(X) for value in feature_values] entropies = [self._entropy(y[X[:, feature] == value]) for value in feature_values] return np.sum([p * e for p, e in zip(probs, entropies)]) # 选择最优特征 def _select_feature(self, X, y): n_features = X.shape[1] entropies = [self._conditional_entropy(X, y, feature) for feature in range(n_features)] return np.argmin(entropies) # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature = self._select_feature(X, y) # 选择最优特征 feature_values = np.unique(X[:, feature]) left_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[0]] right_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[1]] left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] == np.unique(X[:, node.feature])[0]: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = ID3DecisionTree() model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy) C4.5决策树 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, threshold=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.threshold = threshold # 划分数据集的阈值 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class C45DecisionTree: def __init__(self, min_samples_split=2, min_gain_ratio=1e-4): self.min_samples_split = min_samples_split # 最小划分样本数 self.min_gain_ratio = min_gain_ratio # 最小增益比 self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature, threshold): left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left_probs = np.sum(left_indices) / len(X) right_probs = np.sum(right_indices) / len(X) entropies = [self._entropy(y[left_indices]), self._entropy(y[right_indices])] return np.sum([p * e for p, e in zip([left_probs, right_probs], entropies)]) # 计算信息增益 def _information_gain(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) return entropy - conditional_entropy # 计算信息增益比 def _gain_ratio(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) split_info = -np.sum([p * np.log2(p) for p in [np.sum(X[:, feature] <= threshold) / len(X), np.sum(X[:, feature] > threshold) / len(X)]]) return (entropy - conditional_entropy) / split_info if split_info != 0 else 0 # 选择最优特征和划分阈值 def _select_feature_and_threshold(self, X, y): n_features = X.shape[1] max_gain_ratio = -1 best_feature, best_threshold = None, None for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: if len(y[X[:, feature] <= threshold]) >= self.min_samples_split and len(y[X[:, feature] > threshold]) >= self.min_samples_split: gain_ratio = self._gain_ratio(X, y, feature, threshold) if gain_ratio > max_gain_ratio: max_gain_ratio = gain_ratio best_feature = feature best_threshold = threshold return best_feature, best_threshold # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature, threshold = self._select_feature_and_threshold(X, y) # 选择最优特征和划分阈值 if feature is None or threshold is None: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, threshold=threshold, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] <= node.threshold: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = C45DecisionTree(min_samples_split=5) model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy)
以下是使用Python实现决策树鸢尾花ID3算法的示例代码: python import pandas as pd import numpy as np # 定义节点的类 class Node: def __init__(self, feature=None, label=None, sub_nodes=None): self.feature = feature # 当前节点的特征 self.label = label # 当前节点的标签 self.sub_nodes = sub_nodes # 当前节点的子节点 # 定义决策树的类 class DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon # 定义划分阈值 # 计算信息熵 def calc_entropy(self, data): labels = data[:, -1] label_count = np.unique(labels, return_counts=True)[1] probs = label_count / len(labels) entropy = np.sum(-probs * np.log2(probs)) return entropy # 计算条件熵 def calc_condition_entropy(self, data, feature_idx): feature_values = data[:, feature_idx] unique_values = np.unique(feature_values) entropy = 0 for value in unique_values: sub_data = data[feature_values == value] sub_entropy = self.calc_entropy(sub_data) entropy += (len(sub_data) / len(data)) * sub_entropy return entropy # 选择最优划分特征 def choose_best_feature(self, data): feature_count = data.shape[1] - 1 max_info_gain = 0 best_feature_idx = 0 base_entropy = self.calc_entropy(data) for i in range(feature_count): condition_entropy = self.calc_condition_entropy(data, i) info_gain = base_entropy - condition_entropy if info_gain > max_info_gain: max_info_gain = info_gain best_feature_idx = i return best_feature_idx # 构建决策树 def build_tree(self, data): labels = data[:, -1] if len(np.unique(labels)) == 1: return Node(label=labels[0]) if data.shape[1] == 1: return Node(label=np.argmax(np.bincount(labels))) best_feature_idx = self.choose_best_feature(data) best_feature = data[:, best_feature_idx] root = Node(feature=best_feature_idx) unique_values = np.unique(best_feature) sub_nodes = [] for value in unique_values: sub_data = data[best_feature == value] sub_node = self.build_tree(sub_data) sub_nodes.append(sub_node) root.sub_nodes = sub_nodes return root # 预测单个样本的类别 def predict_sample(self, root, sample): while root.sub_nodes: feature_idx = root.feature feature_value = sample[feature_idx] sub_node = root.sub_nodes[int(feature_value)] root = sub_node return root.label # 预测测试集的类别 def predict(self, root, test_data): predictions = [] for sample in test_data: prediction = self.predict_sample(root, sample) predictions.append(prediction) return np.array(predictions) # 计算准确率 def accuracy(self, y_true, y_pred): return np.sum(y_true == y_pred) / len(y_true) # 读取数据集 data = pd.read_csv('iris.csv').values np.random.shuffle(data) train_data = data[:120] test_data = data[120:] # 构建决策树并预测测试集 dt = DecisionTree() root = dt.build_tree(train_data) y_true = test_data[:, -1] y_pred = dt.predict(root, test_data[:, :-1]) print('Accuracy:', dt.accuracy(y_true, y_pred)) 说明: - 该代码使用了鸢尾花数据集,数据集文件名为iris.csv,可以自行更改为其他数据集。 - 在DecisionTree类的构造函数中,定义了划分阈值epsilon,默认值为0.1。 - Node类表示决策树的节点,包含特征、标签和子节点三个属性。 - DecisionTree类中的calc_entropy方法计算信息熵,calc_condition_entropy方法计算条件熵,choose_best_feature方法选择最优划分特征,build_tree方法递归构建决策树,predict_sample方法预测单个样本的类别,predict方法预测测试集的类别,accuracy方法计算准确率。 - 最后输出测试集的准确率。
C4.5算法是一种基于信息增益比的决策树算法,它是ID3算法的一种改进。下面是Python实现C4.5决策树的基本步骤: 步骤1:计算每个特征的信息增益比 首先,需要计算每个特征的信息增益比,即计算每个特征对分类的贡献程度。计算信息增益比的公式如下: $$GainRatio = \frac{Gain(D,A)}{IV(A)}$$ 其中,$Gain(D,A)$表示数据集$D$相对于特征$A$的信息增益,$IV(A)$表示特征$A$的固有值,计算公式如下: $$IV(A) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} log_2 \frac{|D_i|}{|D|}$$ 步骤2:选择信息增益比最大的特征作为当前节点的划分特征 选择信息增益比最大的特征作为当前节点的划分特征,将数据集划分为多个子数据集,然后递归的构建决策树。 步骤3:终止条件 构建决策树的过程中,需要设置终止条件,比如:达到预定的树深度、样本数目小于阈值等。 Python代码实现: python import numpy as np import pandas as pd import math class DecisionTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self.tree = {} def calc_entropy(self, y): """ 计算信息熵 """ n = len(y) if n <= 1: return 0 counts = np.bincount(y) probs = counts / n n_classes = np.count_nonzero(probs) if n_classes <= 1: return 0 ent = 0. for i in probs: ent -= i * math.log(i, 2) return ent def calc_cond_entropy(self, x, y): """ 计算条件熵 """ n = len(y) if n <= 1: return 0 ent = 0. for v in set(x): sub_y = y[x == v] ent += len(sub_y) / n * self.calc_entropy(sub_y) return ent def calc_info_gain(self, x, y): """ 计算信息增益 """ ent = self.calc_entropy(y) cond_ent = self.calc_cond_entropy(x, y) return ent - cond_ent def calc_info_gain_ratio(self, x, y): """ 计算信息增益比 """ info_gain = self.calc_info_gain(x, y) iv = self.calc_entropy(x) if iv == 0: return 0 return info_gain / iv def fit(self, X, y, depth=0): """ 构建决策树 """ n_samples, n_features = X.shape n_labels = len(set(y)) # 如果所有样本属于同一类别,停止划分 if n_labels == 1: return y[0] # 如果样本数量小于阈值,停止划分 if n_samples < self.epsilon: return np.bincount(y).argmax() # 如果特征数量为0,停止划分 if n_features == 0: return np.bincount(y).argmax() # 如果达到最大深度,停止划分 if depth == 10: return np.bincount(y).argmax() # 选择最优划分特征 gains = np.zeros(n_features) for f in range(n_features): gains[f] = self.calc_info_gain_ratio(X[:, f], y) best_feature = np.argmax(gains) # 如果最优划分特征的信息增益比小于阈值,停止划分 if gains[best_feature] < 1e-4: return np.bincount(y).argmax() # 递归构建决策树 self.tree = {'feature': best_feature} for v in set(X[:, best_feature]): idx = X[:, best_feature] == v sub_X, sub_y = X[idx], y[idx] self.tree[v] = self.fit(sub_X, sub_y, depth+1) return self def predict(self, X): """ 预测 """ node = self.tree while isinstance(node, dict): feature = node['feature'] node = node[X[feature]] return node # 测试 data = pd.read_csv('data.csv') X = data.drop(['class'], axis=1).values y = data['class'].values clf = DecisionTree(epsilon=5) clf.fit(X, y) print(clf.tree)
好的,这是一个使用ID3算法生成决策树的Python示例代码: python import math class Node: def __init__(self, attribute=None, value=None, results=None, branches=None): self.attribute = attribute # 该节点对应的属性 self.value = value # 该节点对应的属性值 self.results = results # 如果该节点是叶子节点,结果是一个字典,否则为None self.branches = branches # 如果该节点不是叶子节点,分支是一个字典,否则为None def divide_set(rows, column, value): # 根据某个属性值划分数据集 split_function = None if isinstance(value, int) or isinstance(value, float): split_function = lambda row: row[column] >= value else: split_function = lambda row: row[column] == value set1 = [row for row in rows if split_function(row)] set2 = [row for row in rows if not split_function(row)] return (set1, set2) def unique_counts(rows): # 计算每个结果的数量 results = {} for row in rows: r = row[-1] if r not in results: results[r] = 0 results[r] += 1 return results def entropy(rows): # 计算熵 log2 = lambda x: math.log(x) / math.log(2) results = unique_counts(rows) ent = 0.0 for r in results.keys(): p = float(results[r]) / len(rows) ent -= p * log2(p) return ent def build_tree(rows): # 构建决策树 if len(rows) == 0: return Node() current_score = entropy(rows) best_gain = 0.0 best_criteria = None best_sets = None column_count = len(rows[0]) - 1 for col in range(column_count): column_values = {} for row in rows: column_values[row[col]] = 1 for value in column_values.keys(): (set1, set2) = divide_set(rows, col, value) p = float(len(set1)) / len(rows) gain = current_score - p * entropy(set1) - (1 - p) * entropy(set2) if gain > best_gain and len(set1) > 0 and len(set2) > 0: best_gain = gain best_criteria = (col, value) best_sets = (set1, set2) if best_gain > 0: true_branch = build_tree(best_sets[0]) false_branch = build_tree(best_sets[1]) return Node(attribute=best_criteria[0], value=best_criteria[1], branches={True: true_branch, False: false_branch}) else: return Node(results=unique_counts(rows)) def print_tree(tree, indent=''): # 输出决策树 if tree.results is not None: print(str(tree.results)) else: print(str(tree.attribute) + ' : ' + str(tree.value) + ' ?') print(indent + 'T->', end='') print_tree(tree.branches[True], indent + ' ') print(indent + 'F->', end='') print_tree(tree.branches[False], indent + ' ') # 示例 rows = [ [1, 3, 2, 'yes'], [1, 2, 2, 'yes'], [1, 3, 1, 'no'], [2, 3, 2, 'no'], [2, 2, 1, 'no'], [3, 3, 2, 'yes'], [3, 2, 1, 'no'], [3, 1, 2, 'yes'], [2, 1, 1, 'yes'], [1, 1, 2, 'no'] ] tree = build_tree(rows) print_tree(tree) 以上代码将根据数据集中的属性值生成决策树。你可以根据自己的数据集进行调整。
好的,以下是Python实现iris数据集的ID3算法决策树的示例代码: python import pandas as pd import numpy as np from math import log2 # 读取数据集 data = pd.read_csv('iris.csv') # 划分训练集和测试集 train_data = data.sample(frac=0.8, random_state=0) test_data = data.drop(train_data.index) # 定义ID3算法决策树类 class ID3DecisionTree: def __init__(self, max_depth): self.max_depth = max_depth def fit(self, data, targets, features): self.tree = self.build_tree(data, targets, features, depth=0) def predict(self, data): predictions = [] for _, row in data.iterrows(): predictions.append(self.traverse_tree(row, self.tree)) return predictions def build_tree(self, data, targets, features, depth): # 如果只有一种标签,则返回叶子节点 if len(set(targets)) == 1: return {'label': targets.iloc[0]} # 如果没有特征可用,则返回叶子节点,标签为最常见的标签 if not features: return {'label': targets.value_counts().idxmax()} # 如果达到最大深度,则返回叶子节点,标签为最常见的标签 if depth >= self.max_depth: return {'label': targets.value_counts().idxmax()} # 计算信息增益 best_feature, best_gain = None, -1 for feature in features: gain = self.information_gain(data, targets, feature) if gain > best_gain: best_feature, best_gain = feature, gain # 如果最好的特征的信息增益为0,则返回叶子节点,标签为最常见的标签 if best_gain == 0: return {'label': targets.value_counts().idxmax()} # 构建决策树 tree = {'feature': best_feature, 'children': {}} features.remove(best_feature) for value in data[best_feature].unique(): sub_data = data[data[best_feature] == value] sub_targets = targets.loc[sub_data.index] if sub_data.empty: tree['children'][value] = {'label': targets.value_counts().idxmax()} else: tree['children'][value] = self.build_tree(sub_data, sub_targets, features, depth+1) return tree def information_gain(self, data, targets, feature): # 计算数据集的熵 entropy = self.entropy(targets) # 计算特征的熵和条件熵 feature_entropy, conditional_entropy = 0, 0 for value in data[feature].unique(): sub_targets = targets.loc[data[data[feature] == value].index] probability = len(sub_targets) / len(targets) feature_entropy += -probability * self.entropy(sub_targets) conditional_entropy += probability * self.entropy(sub_targets) # 计算信息增益 return entropy - conditional_entropy def entropy(self, targets): # 计算给定标签的熵 entropy = 0 for _, count in targets.value_counts().iteritems(): probability = count / len(targets) entropy += -probability * log2(probability) return entropy def traverse_tree(self, data, tree): # 遍历决策树,返回预测的标签 if 'label' in tree: return tree['label'] feature = tree['feature'] value = data[feature] if value not in tree['children']: return tree['children'][data[feature]]['label'] return self.traverse_tree(data, tree['children'][value]) # 定义特征和标签 features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] target = 'species' # 初始化决策树 tree = ID3DecisionTree(max_depth=3) # 训练决策树 tree.fit(train_data[features], train_data[target], features) # 预测测试集 predictions = tree.predict(test_data[features]) # 计算准确率 accuracy = sum(predictions == test_data[target]) / len(test_data) print('Accuracy:', accuracy) 注意,这个示例代码是针对iris数据集的,如果要应用到其他数据集,需要根据数据集的特点进行相应的修改。
以下是一个简单的基于ID3算法的决策树分类预测的Python代码: python import pandas as pd import numpy as np import math # 定义计算熵的函数 def calc_entropy(data): label_col = data.iloc[:, -1] _, counts = np.unique(label_col, return_counts=True) probs = counts / len(label_col) entropy = sum(probs * -np.log2(probs)) return entropy # 定义计算信息增益的函数 def calc_info_gain(data, feature): entropy_before_split = calc_entropy(data) vals, counts = np.unique(data[feature], return_counts=True) probs = counts / sum(counts) entropy_after_split = 0 for i in range(len(vals)): sub_data = data[data[feature] == vals[i]] entropy_after_split += probs[i] * calc_entropy(sub_data) info_gain = entropy_before_split - entropy_after_split return info_gain # 定义获取最佳切分特征的函数 def get_best_split_feature(data): features = data.columns[:-1] best_feature = None best_info_gain = -1 for feature in features: info_gain = calc_info_gain(data, feature) if info_gain > best_info_gain: best_info_gain = info_gain best_feature = feature return best_feature # 定义决策树训练函数 def train_decision_tree(data): # 终止条件1:如果数据集中所有样本都属于同一类别,直接返回该类别 if len(np.unique(data.iloc[:, -1])) == 1: return np.unique(data.iloc[:, -1])[0] # 终止条件2:如果数据集中没有特征可供切分,直接返回样本数最多的类别 if len(data.columns) == 1: return np.bincount(data.iloc[:, -1]).argmax() # 选择最佳切分特征 best_feature = get_best_split_feature(data) # 构建决策树 decision_tree = {best_feature: {}} vals, counts = np.unique(data[best_feature], return_counts=True) for i in range(len(vals)): # 去掉最佳切分特征,递归构建子树 sub_data = data[data[best_feature] == vals[i]].drop(best_feature, axis=1) decision_tree[best_feature][vals[i]] = train_decision_tree(sub_data) return decision_tree # 定义决策树预测函数 def predict(data, tree): for feature, subtree in tree.items(): val = data[feature] if val not in subtree: return np.bincount(data.iloc[:, -1]).argmax() subtree = subtree[val] if isinstance(subtree, dict): return predict(data.drop(feature, axis=1), subtree) else: return subtree # 加载数据集 data = pd.read_csv('data.csv') # 训练决策树 decision_tree = train_decision_tree(data) # 预测新样本 new_data = pd.DataFrame({'feature1': [1, 1, 0, 0], 'feature2': [1, 0, 1, 0]}) for i in range(len(new_data)): prediction = predict(new_data.iloc[i], decision_tree) print('Sample', i+1, 'predicted class:', prediction) 注:此代码仅作为学习参考,实际应用中需要考虑更多的细节和优化措施。
以下是使用Python实现ID3算法决策树的测试代码示例: python import pandas as pd import numpy as np from math import log2 class DecisionTree(): def __init__(self): self.tree = {} def fit(self, X, y): self.tree = self.build_tree(X, y) def predict(self, X): preds = [] for _, sample in X.iterrows(): preds.append(self.traverse_tree(sample, self.tree)) return preds def traverse_tree(self, sample, node): if isinstance(node, str): return node else: feature, values_dict = node value = sample[feature] if value not in values_dict: return None else: return self.traverse_tree(sample, values_dict[value]) def build_tree(self, X, y): num_samples = len(y) num_features = len(X.columns) # If all samples have the same label, return that label if len(set(y)) == 1: return y[0] # If no more features, return the most common label if num_features == 0: return max(set(y), key=y.count) # Choose the best feature to split on best_feature = None best_gain = -1 for feature in X.columns: gain = self.information_gain(X[feature], y) if gain > best_gain: best_feature = feature best_gain = gain # Create a new node and split the data node = (best_feature, {}) feature_values = set(X[best_feature]) for value in feature_values: subset_X, subset_y = self.split_data(X, y, best_feature, value) if len(subset_y) == 0: node[1][value] = max(set(y), key=y.count) else: node[1][value] = self.build_tree(subset_X, subset_y) return node def split_data(self, X, y, feature, value): subset_X = X[X[feature] == value].drop(feature, axis=1) subset_y = y[X[feature] == value] return subset_X, subset_y def entropy(self, y): num_samples = len(y) value_counts = pd.Series(y).value_counts(normalize=True) return -(value_counts * np.log2(value_counts)).sum() def information_gain(self, X_feature, y): base_entropy = self.entropy(y) feature_values = set(X_feature) new_entropy = 0 for value in feature_values: subset_y = y[X_feature == value] new_entropy += len(subset_y) / len(y) * self.entropy(subset_y) return base_entropy - new_entropy 这段代码实现了一个简单的决策树分类器,使用ID3算法进行决策树的构建。其中,fit方法用于训练模型,predict方法用于预测新样本的分类,build_tree方法用于递归构建决策树,split_data方法用于根据某个特征的某个取值将数据集分割成子集,entropy方法用于计算数据集的信息熵,information_gain方法用于计算某个特征的信息增益。 你可以使用该代码实现决策树的测试。
好的,下面是用Python实现的决策树算法,以ID3算法为例: python import numpy as np from collections import Counter class ID3DecisionTree: def __init__(self, max_depth=None): self.max_depth = max_depth def fit(self, X, y): self.n_features_ = X.shape[1] self.tree_ = self._grow_tree(X, y) def predict(self, X): return [self._predict(inputs) for inputs in X] def _predict(self, inputs): node = self.tree_ while node.is_leaf_node() == False: if inputs[node.feature_] <= node.threshold_: node = node.left_ else: node = node.right_ return node.value_ def _grow_tree(self, X, y, depth=0): num_samples_per_class = [np.sum(y == i) for i in range(len(set(y)))] predicted_class = np.argmax(num_samples_per_class) node = Node(predicted_class=predicted_class) if depth < self.max_depth: feature, threshold = self._best_split(X, y) if feature is not None: indices_left = X[:, feature] <= threshold X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node = Node(feature=feature, threshold=threshold) node.left_ = self._grow_tree(X_left, y_left, depth+1) node.right_ = self._grow_tree(X_right, y_right, depth+1) return node def _best_split(self, X, y): best_gain = -1 split_feature, threshold = None, None n_samples, n_features = X.shape entropy_parent = self._entropy(y) for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: gain = self._information_gain(X, y, feature, threshold, entropy_parent) if gain > best_gain: best_gain = gain split_feature = feature split_threshold = threshold return split_feature, split_threshold def _information_gain(self, X, y, split_feature, split_threshold, entropy_parent): indices_left = X[:, split_feature] <= split_threshold y_left, y_right = y[indices_left], y[~indices_left] entropy_left = self._entropy(y_left) entropy_right = self._entropy(y_right) n_total = len(y_left) + len(y_right) weight_left, weight_right = len(y_left) / n_total, len(y_right) / n_total information_gain = entropy_parent - (weight_left*entropy_left + weight_right*entropy_right) return information_gain def _entropy(self, y): _, counts = np.unique(y, return_counts=True) probabilities = counts / np.sum(counts) entropy = np.sum(probabilities * -np.log2(probabilities)) return entropy class Node: def __init__(self, feature=None, threshold=None, predicted_class=None): self.feature_ = feature self.threshold_ = threshold self.predicted_class_ = predicted_class self.left_ = None self.right_ = None def is_leaf_node(self): return self.predicted_class_ is not None @property def value_(self): return self.predicted_class_ 以上代码中,首先定义了一个ID3DecisionTree类,初始化时可以传入最大深度。fit方法用于训练模型,传入训练数据集X和标签y。predict方法用于预测,传入测试数据集X,返回预测结果。_grow_tree方法用于生长决策树,传入当前节点的数据集X和标签y,以及当前树的深度depth。_predict方法用于对于单个样本进行预测。_best_split方法用于找到最佳分裂特征和阈值。_information_gain方法用于计算信息增益。_entropy方法用于计算熵。Node类用于表示决策树的节点,其中包含属性feature_、threshold_、predicted_class_、left_和right_,分别表示特征、阈值、预测类别、左子树和右子树。

最新推荐

C-C++图书管理系统340.txt

课设资源,代码可运行,附完整报告

[] - 2023-08-31 《奥本海默》上映:当世界上第一颗原子弹爆炸时,原子弹之父闪过一个念头!.pdf

互联网发展快报,最新互联网消息 互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息互联网发展快报,最新互联网消息

plc控制交通灯毕业设计论文.doc

plc控制交通灯毕业设计论文.doc

"阵列发表文章竞争利益声明要求未包含在先前发布版本中"

阵列13(2022)100125关于先前发表的文章竞争利益声明声明未包含在先前出现的以下文章的发布版本问题 的“数组”。 的 适当的声明/竞争利益由作者提供的陈述如下。1. https://doi.org/10.1016/j.array.2020.100021“Deeplearninginstatic,metric-basedbugprediction”,Array,Vol-ume6,2020,100021,竞争利益声明:发表后联系作者,要求发表利益声明。2. 自 适 应 恢 复 数 据 压 缩 。 [ 《 阵 列 》 第 12 卷 , 2021 , 100076 ,https://doi.org/10.1016/j.array.2021.100076.竞争利益声明:发表后联系作者,要求发表利益声明。3. “使用深度学习技术和基于遗传的特征提取来缓解演示攻击”。[《阵列》第7卷,2020年,100029]https://doi.org/10.1016/j.array.2020.100029。竞争利益声明:发表后联系作者,要求发表利益声明。4. “基于混合优化算法的协作认知无线电网络资源优化分配”. [Array,Volume12,2021,100093https://doi

动态规划与最大子数组和问题:如何高效解决序列中的最大子数组和

## 1. 引言 ### 1.1 背景介绍 动态规划是一种解决复杂问题的算法设计方法,它通过将问题分解成子问题,并解决每个子问题,从而逐步构建最优解。在计算机科学和算法领域,动态规划被广泛应用于优化问题的求解。 ### 1.2 动态规划在算法中的重要性 动态规划不仅仅是一种算法,更是一种解决问题的思维方式。它通过保存子问题的解,避免了重复计算,从而在时间和空间上实现了效率的提升。这种思想在很多经典算法问题中都发挥着关键作用,其中之一便是最大子数组和问题。 ### 1.3 最大子数组和问题的实际应用场景 最大子数组和问题是在一个数组中找到一个具有最大和的连续子数组的问题。这个问题在实际中有

def charlist(): li=[] for i in range('A','Z'+1): li.append(i) return li

这段代码有误,因为 `range()` 函数的第一个参数应该是整数类型而不是字符串类型,应该改为 `range(ord('A'), ord('Z')+1)`。同时,还需要将 `ord()` 函数得到的整数转化为字符类型,可以使用 `chr()` 函数来完成。修改后的代码如下: ``` def charlist(): li = [] for i in range(ord('A'), ord('Z')+1): li.append(chr(i)) return li ``` 这个函数的作用是返回一个包含大写字母 A 到 Z 的列表。

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

动态多智能体控制的贝叶斯优化模型及其在解决复杂任务中的应用

阵列15(2022)100218空间导航放大图片创作者:John A. 黄a,b,1,张克臣c,Kevin M. 放大图片作者:Joseph D. 摩纳哥ca约翰霍普金斯大学应用物理实验室,劳雷尔,20723,MD,美国bKavli Neuroscience Discovery Institute,Johns Hopkins University,Baltimore,21218,VA,USAc约翰霍普金斯大学医学院生物医学工程系,巴尔的摩,21205,MD,美国A R T I C L E I N F O保留字:贝叶斯优化多智能体控制Swarming动力系统模型UMAPA B S T R A C T用于控制多智能体群的动态系统模型已经证明了在弹性、分散式导航算法方面的进展。我们之前介绍了NeuroSwarms控制器,其中基于代理的交互通过类比神经网络交互来建模,包括吸引子动力学 和相位同步,这已经被理论化为在导航啮齿动物的海马位置细胞回路中操作。这种复杂性排除了通常使用的稳定性、可控性和性能的线性分析来研究传统的蜂群模型此外�

动态规划入门:如何有效地识别问题并构建状态转移方程?

### I. 引言 #### A. 背景介绍 动态规划是计算机科学中一种重要的算法思想,广泛应用于解决优化问题。与贪婪算法、分治法等不同,动态规划通过解决子问题的方式来逐步求解原问题,充分利用了子问题的重叠性质,从而提高了算法效率。 #### B. 动态规划在计算机科学中的重要性 动态规划不仅仅是一种算法,更是一种设计思想。它在解决最短路径、最长公共子序列、背包问题等方面展现了强大的能力。本文将深入介绍动态规划的基本概念、关键步骤,并通过实例演练来帮助读者更好地理解和运用这一算法思想。 --- ### II. 动态规划概述 #### A. 什么是动态规划? 动态规划是一种将原问题拆解

DIANA(自顶向下)算法处理鸢尾花数据集,用轮廓系数作为判断依据,其中DIANA算法中有哪些参数,请输出。 对应的参数如何取值,使得其对应的轮廓系数的值最高?针对上述问题给出详细的代码和注释

DIANA(自顶向下)算法是一种聚类算法,它的参数包括: 1. k值:指定聚类簇的数量,需要根据实际问题进行设置。 2. 距离度量方法:指定计算样本之间距离的方法,可以选择欧氏距离、曼哈顿距离等。 3. 聚类合并准则:指定合并聚类簇的准则,可以选择最大类间距离、最小类内距离等。 为了让轮廓系数的值最高,我们可以通过调整这些参数的取值来达到最优化的效果。具体而言,我们可以采用网格搜索的方法,对不同的参数组合进行测试,最终找到最优的参数组合。 以下是使用DIANA算法处理鸢尾花数据集,并用轮廓系数作为判断依据的Python代码和注释: ```python from sklearn impo