卷积神经网络的国内外研究综述
时间: 2024-03-10 17:41:45 浏览: 258
综述,综述论文怎么写 基本结构,PDF
卷积神经网络(Convolutional Neural Network,CNN)是一种深度习模型,广泛应用于图像识别、计算机视觉和自然语言处理等领域。以下是卷积神经网络的国内外研究综述的一些重要方向和进展:
1. 模型结构改进:研究者们一直在探索如何改进卷积神经网络的模型结构,以提高其性能。例如,引入残差连接(Residual Connection)的ResNet模型、引入注意力机制的Transformer模型等。
2. 特征表示学习:卷积神经网络通过多层卷积和池化操作来提取图像或文本的特征表示。研究者们致力于设计更有效的特征表示学习方法,如使用预训练模型进行迁移学习、引入自监督学习等。
3. 目标检测与分割:目标检测和分割是计算机视觉领域的重要任务。研究者们提出了一系列基于卷积神经网络的目标检测和分割方法,如Faster R-CNN、Mask R-CNN等。
4. 弱监督学习:传统的监督学习需要大量标注数据,而弱监督学习则是在标注数据不充足的情况下进行学习。研究者们提出了一些基于卷积神经网络的弱监督学习方法,如多示例学习、无监督预训练等。
5. 跨模态学习:跨模态学习是指将不同类型的数据(如图像和文本)进行联合学习。研究者们提出了一些基于卷积神经网络的跨模态学习方法,如图像与文本的联合表示学习、图像与语音的联合处理等。
阅读全文