from sklearn.metrics import explained_variance_score,mean_absolute_error,mean_squared_error,median_absolute_error,r2_score
时间: 2023-08-11 08:05:25 浏览: 163
这是一个 Python 代码片段,导入了 sklearn 库中的一些评估指标函数。这些函数分别是 explained_variance_score、mean_absolute_error、mean_squared_error、median_absolute_error 和 r2_score。这些评估指标通常用于评估机器学习模型的性能。其中,explained_variance_score 评估模型对目标变量的解释能力,mean_absolute_error 和 mean_squared_error 评估模型预测值与真实值之间的平均绝对误差和平均平方误差,median_absolute_error 评估模型预测值与真实值之间的中位数绝对误差,r2_score 评估模型对目标变量的拟合程度。
相关问题
通过sklearn库加载california_housing 数据集(sklearn.datasets.fetch_california_housing),构建回归模型(可采用LinearRegression 或SVR算法),并对模型进行评价(包括均方误差、中值绝对误差、可解释性方差等)。
好的,我知道了。以下是代码实现和解释:
```python
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, median_absolute_error, explained_variance_score
# 加载数据集
housing = fetch_california_housing()
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.2, random_state=42)
# 构建线性回归模型
lr = LinearRegression()
lr.fit(X_train, y_train)
# 构建SVR模型
svr = SVR()
svr.fit(X_train, y_train)
# 对线性回归模型进行评价
y_pred_lr = lr.predict(X_test)
mse_lr = mean_squared_error(y_test, y_pred_lr)
mae_lr = median_absolute_error(y_test, y_pred_lr)
evs_lr = explained_variance_score(y_test, y_pred_lr)
# 对SVR模型进行评价
y_pred_svr = svr.predict(X_test)
mse_svr = mean_squared_error(y_test, y_pred_svr)
mae_svr = median_absolute_error(y_test, y_pred_svr)
evs_svr = explained_variance_score(y_test, y_pred_svr)
# 输出评价结果
print("Linear Regression:")
print("Mean Squared Error:", mse_lr)
print("Median Absolute Error:", mae_lr)
print("Explained Variance Score:", evs_lr)
print("\n")
print("Support Vector Regression:")
print("Mean Squared Error:", mse_svr)
print("Median Absolute Error:", mae_svr)
print("Explained Variance Score:", evs_svr)
```
解释:
1. 首先,我们使用 `fetch_california_housing` 函数加载数据集。该数据集包含了 20640 条记录,每条记录有 8 个特征和 1 个目标值。
2. 然后,我们使用 `train_test_split` 函数将数据集划分为训练集和测试集。其中,训练集占 80%,测试集占 20%。
3. 接着,我们使用 `LinearRegression` 类和 `SVR` 类分别构建线性回归模型和 SVR 模型,并在训练集上拟合数据。
4. 然后,我们使用 `mean_squared_error` 函数、`median_absolute_error` 函数和 `explained_variance_score` 函数对模型进行评价。其中,均方误差(Mean Squared Error,MSE)、中值绝对误差(Median Absolute Error,MAE)和可解释性方差(Explained Variance Score,EVS)是回归任务中常用的评价指标。
5. 最后,我们输出评价结果。可以看到,SVR 模型在 MSE 和 MAE 方面表现更好,而线性回归模型在 EVS 方面表现更好。
希望能够帮到你!
['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision', 'balanced_accuracy', 'completeness_score', 'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_samples', 'jaccard_weighted', 'matthews_corrcoef', 'max_error', 'mutual_info_score', 'neg_brier_score', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error', 'neg_mean_gamma_deviance', 'neg_mean_poisson_deviance', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_median_absolute_error', 'neg_negative_likelihood_ratio', 'neg_root_mean_squared_error', 'normalized_mutual_info_score', 'positive_likelihood_ratio', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'rand_score', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc', 'roc_auc_ovo', 'roc_auc_ovo_weighted', 'roc_auc_ovr', 'roc_auc_ovr_weighted', 'top_k_accuracy', 'v_measure_score']哪些适合xgboost回归
对于XGBoost回归问题,以下指标适合用于评估模型性能:
- explained_variance:解释方差
- neg_mean_absolute_error:负均绝对误差
- neg_mean_squared_error:负均方误差
- neg_mean_squared_log_error:负对数均方误差
- neg_median_absolute_error:负中值绝对误差
- r2:R平方值
这些指标可以通过scikit-learn库中的相关函数来计算。例如,使用neg_mean_absolute_error函数计算负均绝对误差:
```python
from sklearn.metrics import mean_absolute_error
# 假设y_true是真实值,y_pred是模型预测值
mae = mean_absolute_error(y_true, y_pred)
neg_mae = -mae
```
你可以根据需要选择适当的指标进行评估。请注意,这些指标适用于回归问题,不适用于分类问题。
阅读全文