提供一段朴素贝叶斯分类的代码
时间: 2023-11-09 15:08:47 浏览: 63
以下是一个简单的朴素贝叶斯分类器实现的示例代码:
```python
import numpy as np
class NaiveBayesClassifier():
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
# 初始化参数
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
for c in self._classes:
X_c = X[c==y]
self._mean[c,:] = X_c.mean(axis=0)
self._var[c,:] = X_c.var(axis=0)
self._priors[c] = X_c.shape[0] / float(n_samples)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)
def _predict(self, x):
posteriors = []
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
class_conditional = np.sum(np.log(self._pdf(idx, x)))
posterior = prior + class_conditional
posteriors.append(posterior)
return self._classes[np.argmax(posteriors)]
def _pdf(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(-(x-mean)**2 / (2*var))
denominator = np.sqrt(2*np.pi*var)
return numerator / denominator
```
这个分类器支持多分类和多元特征,使用高斯分布作为类条件概率的估计方法。`fit` 方法用于训练模型,`predict` 方法用于对新数据进行预测。
阅读全文