nc文件存储了1961-2011年间所有的日平均气温,如何用silce切片获取1961-2010年所有的四五六月的数据
时间: 2024-05-14 07:13:05 浏览: 75
你好,对于您的问题,可以使用以下代码获取1961-2010年所有的四五六月的数据:
```python
import netCDF4 as nc
# 读取nc文件
data = nc.Dataset('your_nc_file_path.nc')
# 获取时间变量
time_var = data.variables['time']
# 获取时间变量的起始时间和结束时间索引
start_index = nc.date2index(datetime.datetime(1961, 1, 1), time_var)[0]
end_index = nc.date2index(datetime.datetime(2010, 12, 31), time_var)[0]
# 获取气温变量
temp_var = data.variables['temperature']
# 切片获取四五六月的数据
data_slice = temp_var[start_index:end_index + 1, 4:7, :]
```
希望这能帮到您。如果您有其他问题,可以继续向我提问。
相关问题
修改此代码,使其图片路径和保存路径改成LiTS2017数据集的路径为E:\LiTS2017。保存路径为E:\2D-LiTS2017,帮我创建保存图像与标签的文件夹,并且将转换好的数据保存到对应的文件夹。。import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
修改后的代码如下:
```
import os
import numpy as np
import nibabel as nib
import imageio
import cv2
def read_niifile(niifilepath): # 读取niifile文件
img = nib.load(niifilepath) # 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name): # 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" +name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1]
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
if not os.path.exists(os.path.join(savepath_seg, name)):
os.makedirs(os.path.join(savepath_seg, name))
if not os.path.exists(os.path.join(savepath_vol, name)):
os.makedirs(os.path.join(savepath_vol, name))
imageio.imwrite(os.path.join(savepath_seg, name, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, name, '{}.png'.format(num)), silce_vol)
num += 1
return num
if __name__ == '__main__':
path= 'E:\\LiTS2017\\'
savepath = 'E:\\2D-LiTS2017\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
在这段代码中,我们修改了`path`和`savepath`变量的值,分别指向LiTS2017数据集的路径和保存图像与标签的文件夹路径。并且在保存图像和标签之前,我们使用了`os.makedirs`函数来创建保存图像和标签的文件夹,确保数据的保存路径是正确的。
import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" + name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path = r"C:\Users\Administrator\Desktop\LiTS2017" savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017" filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename) 替换掉代码中的cv2模块,实现相同功能
可以使用PIL库替换掉cv2模块,实现相同的功能。具体替换方法如下:
1.导入PIL库
```python
from PIL import Image
```
2.将cv2.threshold替换为PIL.ImageOps.autocontrast
```python
silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255
silce_seg = Image.fromarray(silce_seg.astype('uint8'))
silce_seg = ImageOps.autocontrast(silce_seg, cutoff=1)
silce_seg = np.array(silce_seg)
```
3.将cv2.imwrite替换为PIL.Image.save
```python
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
```
替换后的代码如下:
```python
import os
import numpy as np
import nibabel as nib
import imageio
from PIL import Image, ImageOps
def read_niifile(niifilepath):
# 读取niifile文件
img = nib.load(niifilepath)
# 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name):
# 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation/" + "segmentation-" + name
filepath_vol = niifilepath + "volume/" + "volume-" + name
savepath_seg = savepath + "segmentation/"
savepath_vol = savepath + "volume/"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255
silce_seg = Image.fromarray(silce_seg.astype('uint8'))
silce_seg = ImageOps.autocontrast(silce_seg, cutoff=1)
silce_seg = np.array(silce_seg)
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
num += 1
# 将切片信息保存为png格式
return num
if __name__ == '__main__':
path = r"C:\Users\Administrator\Desktop\LiTS2017"
savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017"
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
阅读全文