编写dataset类加载CoCo数据集与tno数据集,使用pytorch训练一个基于多尺度自自编码网络,用COCO数据集训练,通过网络中的encoder函数编码输入图像,再由decoder函数解码特征重建图像并计算重建图像与源图像的损失,保存模型,用该模型进行可见光与红外图像的融合,给出代码
时间: 2023-07-16 17:13:59 浏览: 432
以下是根据您的要求编写的代码,其中包含了加载CoCo数据集和tno数据集、训练多尺度自编码网络、保存模型、可见光与红外图像融合等功能。
```python
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import os
# 定义CoCo数据集的Dataset类
class CoCoDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.img_names = os.listdir(root_dir)
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir, self.img_names[idx])
image = Image.open(img_name).convert('RGB')
if self.transform:
image = self.transform(image)
return image
# 定义tno数据集的Dataset类
class TnoDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.img_names = os.listdir(root_dir)
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = os.path.join(self.root_dir, self.img_names[idx])
image = Image.open(img_name).convert('L')
if self.transform:
image = self.transform(image)
return image
# 定义多尺度自编码网络类
class MultiScaleAutoencoder(torch.nn.Module):
def __init__(self):
super(MultiScaleAutoencoder, self).__init__()
self.encoder = torch.nn.Sequential(
torch.nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2),
torch.nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2),
torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2),
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
self.decoder = torch.nn.Sequential(
torch.nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(32, 16, kernel_size=2, stride=2),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(16, 3, kernel_size=2, stride=2),
torch.nn.Sigmoid()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
# 定义训练函数
def train(model, train_loader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
for data in train_loader:
img = data
img = img.to(device)
output = model(img)
loss = criterion(output, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 保存模型
torch.save(model.state_dict(), 'model.ckpt')
# 定义图像融合函数
def fuse_images(model, visible, infrared):
visible = visible.to(device)
infrared = infrared.to(device)
visible_feature = model.encoder(visible)
infrared_feature = model.encoder(infrared)
fused_feature = (visible_feature + infrared_feature) / 2
fused_image = model.decoder(fused_feature)
return fused_image
# 设置超参数
num_epochs = 10
batch_size = 16
learning_rate = 0.001
# 加载数据集
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
coco_dataset = CoCoDataset('coco_data', transform)
tno_dataset = TnoDataset('tno_data', transform)
coco_loader = DataLoader(coco_dataset, batch_size=batch_size, shuffle=True)
tno_loader = DataLoader(tno_dataset, batch_size=batch_size, shuffle=True)
# 创建模型并将其移动到GPU上
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MultiScaleAutoencoder().to(device)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
train(model, coco_loader, criterion, optimizer, num_epochs)
# 加载可见光图像和红外图像
visible_image = Image.open('visible.jpg').convert('RGB')
infrared_image = Image.open('infrared.jpg').convert('L')
# 对图像进行预处理
preprocess = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
visible_tensor = preprocess(visible_image)
infrared_tensor = preprocess(infrared_image)
# 对图像进行融合
fused_image = fuse_images(model, visible_tensor.unsqueeze(0), infrared_tensor.unsqueeze(0)).squeeze(0)
# 将融合后的图像保存到文件
transforms.ToPILImage()(fused_image.cpu()).save('fused.jpg')
```
在上面的代码中,我们定义了两个数据集类`CoCoDataset`和`TnoDataset`,用于加载CoCo数据集和tno数据集。我们还定义了一个多尺度自编码网络类`MultiScaleAutoencoder`,其中包含了一个encoder函数和一个decoder函数,用于对输入图像进行编码和解码。我们还定义了一个训练函数`train`,用于训练模型,并将训练好的模型保存到文件。最后,我们定义了一个图像融合函数`fuse_images`,用于将可见光图像和红外图像进行融合,得到融合后的图像。
阅读全文