transformer 预测温度 pytorch
时间: 2023-07-21 14:11:15 浏览: 100
搭建PyTorch神经网络进行气温预测.ipynb
要使用Transformer模型预测温度,您需要准备一个合适的数据集并进行适当的数据预处理。以下是一个基本的示例代码,使用PyTorch和Transformer模型来预测温度。
首先,您需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils import rnn
import numpy as np
```
接下来,定义一个自定义的数据集类,用于加载和处理数据:
```python
class TemperatureDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
```
然后,定义一个Transformer模型类:
```python
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads, dropout):
super(TransformerModel, self).__init__()
self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=num_heads)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.fc = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.transformer_encoder(x)
x = self.fc(x[:, -1, :])
x = self.relu(x)
x = self.dropout(x)
x = self.output_layer(x)
return x
```
接下来,定义训练和评估函数:
```python
def train(model, train_loader, criterion, optimizer, device):
model.train()
for batch in train_loader:
inputs = batch[:, :-1, :].to(device)
targets = batch[:, -1, :].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
def evaluate(model, val_loader, criterion, device):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in val_loader:
inputs = batch[:, :-1, :].to(device)
targets = batch[:, -1, :].to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item() * inputs.size(0)
return total_loss / len(val_loader.dataset)
```
最后,定义训练和评估过程:
```python
def train_and_evaluate(data, input_dim, output_dim, hidden_dim, num_layers, num_heads, dropout, batch_size, num_epochs, lr, device):
train_data = TemperatureDataset(data[:-100])
val_data = TemperatureDataset(data[-100:])
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_data, batch_size=batch_size)
model = TransformerModel(input_dim, output_dim, hidden_dim, num_layers, num_heads, dropout).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
best_val_loss = float('inf')
for epoch in range(num_epochs):
train(model, train_loader, criterion, optimizer, device)
val_loss = evaluate(model, val_loader, criterion, device)
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), 'best_model.pt')
print(f'Epoch {epoch+1}/{num_epochs}, Training Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}')
model.load_state_dict(torch.load('best_model.pt'))
return model
```
您可以使用以上代码作为参考,根据您的数据集和需求进行适当的修改。请确保在使用模型进行预测之前,对测试数据进行适当的数据预处理。
希望对您有帮助!
阅读全文