lstm+transformer python代码
时间: 2024-09-23 21:06:07 浏览: 76
LSTM(长短期记忆网络)和Transformer是深度学习中常用的序列模型,它们可以用于自然语言处理任务。在这里,我们将简要展示如何结合LSTM和Transformer的示例Python代码,这通常用于构建编码-解码模型,如机器翻译。首先安装必要的库(如TensorFlow或PyTorch)。
```python
# 使用PyTorch示例
import torch
import torch.nn as nn
class LSTM_Transformer(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout, pad_idx, device):
super().__init__()
self.device = device
# LSTM层
self.lstm = nn.LSTM(input_dim, hid_dim, n_layers, bidirectional=True, dropout=dropout)
# Transformer部分
self.transformer = nn.Transformer(hid_dim*2, emb_dim, n_heads=8, dropout=dropout)
self.linear = nn.Linear(emb_dim, output_dim) # 输出维度取决于具体任务
# 初始化权重矩阵
self.embedding = nn.Embedding(input_dim, emb_dim, padding_idx=pad_idx)
def forward(self, src):
embedded = self.embedding(src) # 输入序列嵌入
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, src.eq(self.pad_idx).sum(dim=0), enforce_sorted=False)
packed_output, (hidden, cell) = self.lstm(packed_embedded) # LSTM编码
hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1) # 双向LSTM取最后两层的隐藏状态
hidden = hidden.permute(1, 0, 2) # 为了适应Transformer输入格式
output = self.transformer(hidden) # Transformer解码
output = self.linear(output) # 应用线性变换得到最终预测
return output
# 假设你已经有了输入和输出维度(input_dim, output_dim),以及其他超参数设置
model = LSTM_Transformer(input_dim, emb_dim, hid_dim, n_layers, dropout, pad_idx, device='cuda' if torch.cuda.is_available() else 'cpu')
```
阅读全文