python实现决策树回归
时间: 2023-10-16 10:06:42 浏览: 155
决策树回归可以用Python中的scikit-learn库来实现。下面是一个简单的示例代码:
```python
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
# 加载数据集
boston = load_boston()
X = boston.data
y = boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义决策树回归模型
model = DecisionTreeRegressor()
# 拟合模型
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)
```
这段代码中,我们首先加载了波士顿房价数据集,然后使用`train_test_split`函数将数据集划分为训练集和测试集。接下来,我们定义了一个决策树回归模型,并使用训练集进行拟合。最后,我们使用测试集进行预测,并计算均方误差来评估模型的性能。
注意,这只是一个简单的示例代码,实际应用中可能需要进行更多的数据预处理、参数调优等操作。
阅读全文