用pytorch写一段代码:用CNN网络对电机轴承的一维振动信号做故障诊断,包括:正常、滚动体故障、外圈故障、内圈故障共四类状态,实现给定真实振动信号判别故障类别...
时间: 2023-11-22 17:56:47 浏览: 111
(1DCNN 一维深度卷积神经网络)的轴承故障诊断(python代码)(私聊打折)
5星 · 资源好评率100%
好的,下面是基于PyTorch实现的CNN网络对电机轴承的一维振动信号进行故障诊断的代码:
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
```
接着,我们定义一个类,该类是一个CNN网络模型,包括多个卷积层和一个全连接层:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv1d(1, 16, kernel_size=5, stride=1, padding=2)
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=1, padding=2)
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32 * 25, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 4)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 32 * 25)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
其中,该CNN网络包括两个卷积层、两个最大池化层和三个全连接层。输入的一维振动信号经过第一个卷积层后,得到16个特征图,再经过第一个最大池化层进行下采样。接着,得到的特征图再经过第二个卷积层和第二个最大池化层得到更多的特征图。最后,将所有特征图展开成一维向量,通过三个全连接层得到分类结果。
接下来,我们定义一个训练函数:
```python
def train(model, train_loader, criterion, optimizer, device):
model.train()
train_loss = 0.0
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
train_loss /= len(train_loader.dataset)
return train_loss
```
其中,训练函数的参数包括模型、训练数据集、损失函数、优化器和设备。在训练函数中,我们对模型进行训练,并计算训练集上的损失。
然后,我们定义一个测试函数:
```python
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0.0
correct = 0.0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item() * data.size(0)
pred = torch.argmax(output, dim=1)
correct += torch.sum(pred == target).item()
test_loss /= len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
return test_loss, accuracy
```
测试函数的参数包括模型、测试数据集、损失函数和设备。在测试函数中,我们对模型进行测试,并计算测试集上的损失和准确率。
最后,我们可以开始训练模型:
```python
if __name__ == '__main__':
# 加载数据
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 转换数据类型
train_data = train_data.astype(np.float32)
train_labels = train_labels.astype(np.long)
test_data = test_data.astype(np.float32)
test_labels = test_labels.astype(np.long)
# 转换数据格式
train_tensor = torch.from_numpy(train_data)
train_labels_tensor = torch.from_numpy(train_labels)
train_dataset = torch.utils.data.TensorDataset(train_tensor, train_labels_tensor)
test_tensor = torch.from_numpy(test_data)
test_labels_tensor = torch.from_numpy(test_labels)
test_dataset = torch.utils.data.TensorDataset(test_tensor, test_labels_tensor)
# 定义超参数
batch_size = 64
learning_rate = 0.001
num_epochs = 100
# 定义模型、损失函数、优化器和设备
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
# 训练模型
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
test_loss, accuracy = test(model, test_loader, criterion, device)
print("Epoch {}, Train Loss: {:.4f}, Test Loss: {:.4f}, Accuracy: {:.4f}".format(
epoch + 1, train_loss, test_loss, accuracy))
```
在训练过程中,我们首先从磁盘加载训练数据和测试数据,并将其转换为PyTorch的张量类型;然后定义超参数、模型、损失函数、优化器和设备;最后,开始训练模型,并输出每个epoch的训练损失、测试损失和准确率。
注意:代码中的数据加载和超参数设置需要根据实际情况进行修改。
阅读全文