qt opencv 车牌识别
时间: 2023-12-22 21:29:47 浏览: 135
在Qt中使用OpenCV进行车牌识别的过程如下:
1. 导入必要的库和模块:
```python
import cv2
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow
```
2. 创建一个Qt窗口:
```python
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.label = QLabel(self)
self.setCentralWidget(self.label)
```
3. 在窗口中加载图像并进行车牌识别:
```python
def process_image(image_path):
# 加载图像
image = cv2.imread(image_path)
# 进行车牌检测
plate_cascade = cv2.CascadeClassifier('haarcascade_russian_plate_number.xml')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plates = plate_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# 对每个检测到的车牌进行字符识别
chars_cascade = cv2.CascadeClassifier('haarcascade_char.xml')
for (x, y, w, h) in plates:
plate = image[y:y+h, x:x+w]
gray_plate = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
chars = chars_cascade.detectMultiScale(gray_plate, scaleFactor=1.1, minNeighbors=5, minSize=(10, 10))
# 在原图像上绘制车牌和字符框
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
for (cx, cy, cw, ch) in chars:
cv2.rectangle(plate, (cx, cy), (cx+cw, cy+ch), (255, 0, 0), 2)
# 将图像转换为Qt可显示的格式
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width, channel = image_rgb.shape
bytes_per_line = 3 * width
q_image = QImage(image_rgb.data, width, height, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(q_image)
return pixmap
```
4. 在主函数中调用窗口和图像处理函数:
```python
if __name__ == '__main__':
app = QApplication([])
window = MainWindow()
window.show()
image_path = 'car_plate.jpg' # 替换为你的车牌图像路径
pixmap = process_image(image_path)
window.label.setPixmap(pixmap)
app.exec_()
```
请注意,上述代码中的`haarcascade_russian_plate_number.xml`和`haarcascade_char.xml`是用于车牌检测和字符识别的级联分类器文件,你需要根据实际情况下载并替换为适合你的分类器文件。
阅读全文