File "D:/pycharm/projects/Pythoneeee/projects/d.py", line 65, in <module> coef_mat = np.column_stack((prob_theta, logit_fit.coef_[0], linear_fit.coef_[0])) File "<__array_function__ internals>", line 200, in column_stack File "D:\pycharm\projects\venv\lib\site-packages\numpy\lib\shape_base.py", line 656, in column_stack return _nx.concatenate(arrays, 1) File "<__array_function__ internals>", line 200, in concatenate ValueError: all the input array dimensions except for the concatenation axis must match exactly, but along dimension 0, the array at index 0 has size 2 and the array at index 1 has size 10
时间: 2024-03-14 14:47:49 浏览: 133
这个错误提示是因为`prob_theta`和`logit_fit.coef_[0]`的维度不一致导致的。可以将`prob_theta`转换成`(n,1)`的矩阵,然后再进行列合并,这样就能保证每个数组在第0个维度上的长度一致了。具体代码如下:
```python
prob_theta = prob_theta.reshape(-1, 1)
coef_mat = np.column_stack((prob_theta, logit_fit.coef_[0], linear_fit.coef_[0]))
```
这里的`reshape`方法将`prob_theta`转换成`(n,1)`的矩阵,其中`-1`表示自动计算维度大小,因为我们只需要将行数确定为`n`即可。
相关问题
runfile('E:/PyCharm/Py_Projects/test.py', wdir='E:/PyCharm/Py_Projects')
你可以在命令行中使用 `runfile` 函数运行 Python 脚本。该函数需要两个参数:脚本的路径和工作目录的路径。在你提供的例子中,你要运行的脚本路径是 `E:/PyCharm/Py_Projects/test.py`,工作目录的路径是 `E:/PyCharm/Py_Projects`。通过执行该命令,你将在指定的工作目录下运行 `test.py` 脚本。
Traceback (most recent call last): File "D:/pycharm/projects/Pythoneeee/projects/最优化期末老师帮.py", line 40, in <module> prop_mat = np.column_stack((prob_fit / logit_fit, TypeError: unsupported operand type(s) for /: 'GaussianNB' and 'LogisticRegression'
这个错误提示是因为在进行列合并时,prob_fit和logit_fit的类型分别为GaussianNB和LogisticRegression,而这两个类型无法进行除法操作。因此,需要先将它们转换为可以进行除法操作的类型。
在scikit-learn库中,GaussianNB和LogisticRegression模型的系数矩阵可以通过调用相应模型对象的`theta_`和`coef_`属性来获取。因此,可以按照如下方式修改代码:
```python
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
# 创建基于概率的模型
prob_model = GaussianNB()
prob_model.fit(X_train, y_train)
prob_fit = prob_model.theta_.reshape((-1, 1))
# 创建基于逻辑回归的模型
logit_model = LogisticRegression()
logit_model.fit(X_train, y_train)
logit_fit = logit_model.coef_.T
# 创建基于线性回归的模型
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
linear_fit = linear_model.coef_
# 将三个模型的系数矩阵按列合并
prop_mat = np.column_stack((prob_fit / logit_fit, linear_fit))
```
在这里,`theta_`属性返回GaussianNB模型的每个特征的均值向量,需要将其reshape为列向量。`coef_`属性返回LogisticRegression模型的系数矩阵,需要进行转置后才能合并。最后,将三个模型的系数矩阵按列合并即可。
阅读全文