android 退出系统代码

时间: 2023-10-04 11:12:16 浏览: 49
在 Android 应用程序中,您不能直接退出整个 Android 系统,因为这是一个操作系统级别的功能。但是,您可以编写代码来退出应用程序并返回到设备的主屏幕。以下是一个简单的示例代码: ``` Intent homeIntent = new Intent(Intent.ACTION_MAIN); homeIntent.addCategory(Intent.CATEGORY_HOME); homeIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); startActivity(homeIntent); finish(); System.exit(0); ``` 这段代码将启动一个返回主屏幕的 Intent,并关闭当前活动。最后,它将调用 `System.exit(0)` 来结束应用程序进程。请注意,这是一个不推荐的做法,因为它可能会导致其他正在运行的应用程序崩溃。
相关问题

Android退出app再新进入代码

在Android中,当应用程序退出后再次进入时,系统会重新启动应用程序的启动Activity。你可以在这个Activity的onCreate()方法中检查是否是应用程序的第一次启动,如果不是,则执行你想要的操作。以下是一个示例代码: 1. 在AndroidManifest.xml文件中,为启动Activity指定一个特殊的主题,用于在应用程序退出后再次进入时,清空Activity栈: ```xml <activity android:name=".MainActivity" android:theme="@style/Theme.AppCompat.NoActionBar"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> ``` 2. 在启动Activity的onCreate()方法中,检查是否是应用程序的第一次启动,如果不是则执行你想要的操作: ```java @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); if (!isFirstLaunch()) { // 如果不是应用程序第一次启动,则执行你想要的操作 ... } } private boolean isFirstLaunch() { SharedPreferences prefs = getSharedPreferences("MyPrefs", MODE_PRIVATE); boolean isFirstLaunch = prefs.getBoolean("isFirstLaunch", true); if (isFirstLaunch) { prefs.edit().putBoolean("isFirstLaunch", false).apply(); } return isFirstLaunch; } ``` 在上述代码中,isFirstLaunch()方法会检查应用程序是否是第一次启动,如果不是则返回false,你可以在这个方法中根据实际情况实现自己的逻辑。如果是第一次启动,则返回true,并将isFirstLaunch的值设为false,以便下次进入应用程序时不再执行这些操作。

android退出应用

在 Android 中,退出应用有多种方法,其中一种常见的方法是使用 `finish()` 函数来关闭当前活动(Activity)。 你可以在你的活动(Activity)的代码中调用 `finish()` 函数来关闭当前活动,例如: ```java // 在活动中调用 finish() 函数来关闭当前活动 finish(); ``` 另外,你也可以使用系统的返回按钮来关闭应用。当用户按下返回按钮时,系统会自动在栈中弹出当前活动。当栈中没有活动时,应用将会关闭。 请注意,虽然你可以关闭当前活动或者退出应用,但 Android 应用设计推荐使用导航和任务栈来管理应用的流程。因此,在实际开发中,你可能会更倾向于使用导航和任务栈来管理应用程序的界面和活动的切换。

相关推荐

最新推荐

recommend-type

ANDROID 完美退出APP的实例代码

本文将详细介绍如何实现“完美退出APP”的实例代码。 首先,我们需要理解Android的Activity管理机制。Android使用Activity栈来管理应用的生命周期。每次启动一个新的Activity,它会被压入栈顶,当一个Activity完成...
recommend-type

Android实现返回键功能

在本文中,我们将深入探讨如何在Android中实现返回键功能,并结合提供的代码片段进行解析。 首先,让我们来看一下`onKeyDown()`方法。在`MainActivity.java`中,我们重写了`Activity`的`onKeyDown()`方法来处理返回...
recommend-type

Android面试宝典

而在当前Activity被另一个Activity覆盖时,会依次调用onPause() -&gt; onStop(),最后当Activity完全退出或者系统需要回收资源时,会调用onDestroy()。 1. 启动Activity有多种方式,最常见的就是通过Intent实例化并...
recommend-type

Android应用禁止屏幕休眠的3种方法

WakeLock 是 Android 系统提供的一种机制,用于保持设备不进入休眠状态。开发者可以通过获取 WakeLock 权限来保持设备不休眠。下面是一个使用 WakeLock 的示例代码: ```java private WakeLock mWakeLock = null; ...
recommend-type

Android调用默认浏览器打开指定Url的方法实例

为了解决这个问题,`onStop()`方法里调用了`finish()`来结束当前Activity,这样即使用户取消,应用也会退出,避免黑色背景的出现。 总之,通过创建一个Intent,设置其action为"android.intent.action.VIEW"并赋予...
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。