基于cifar-10数据集生成vgg16代码使得数据集各种类分辩率达85%
时间: 2023-07-09 12:06:17 浏览: 110
keras实现VGG16 CIFAR10数据集方式
以下是基于CIFAR-10数据集生成的VGG16代码,可以使得各种类的分辨率达到85%。请注意,这只是一个基础模型,您可以根据需要进行调整和优化。
```python
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.datasets import cifar10
# 导入CIFAR-10数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 数据预处理
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# 定义VGG16模型
def vgg16_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(4096, activation='relu'))
model.add(layers.Dense(4096, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
return model
# 创建VGG16模型
model = vgg16_model()
# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test Accuracy:', test_acc)
```
通过训练这个模型,您应该可以达到85%左右的测试准确率。如果需要更高的准确率,您可以尝试添加更多的卷积层或调整超参数。
阅读全文