介绍一下bert模型
时间: 2024-08-26 08:02:01 浏览: 91
bert-classify-backend-master.zip
BERT全称为Bidirectional Encoder Representations from Transformers,是由Google于2018年推出的一种预训练语言模型。它基于Transformer架构,特别之处在于它的双向(bi-directional)训练方式,能够同时考虑输入序列中的上下文信息,这使得BERT在诸如自然语言理解、问答系统、文本分类等任务上取得了显著的进步。
BERT的主要工作流程包括两个阶段:预训练和微调。预训练阶段通过大规模无监督学习,使用 Masked Language Model (MLM) 和 Next Sentence Prediction (NSP) 任务来学习词汇和句子级别的表示。微调阶段则是将预训练好的BERT模型应用到特定下游任务的数据集上,进行有监督的学习,以适应具体的任务需求。
BERT的成功极大地推动了深度学习在自然语言处理领域的应用,并衍生出了许多改进版和变种,如RoBERTa、ALBERT、T5等。这些模型都是为了提高性能或减少计算量而不断优化的。
阅读全文