mopso算法代码程序_没有之一,我见过的最漂亮代码!!
时间: 2024-03-01 20:52:28 浏览: 63
以下是MOPSO算法的Python代码实现:
```python
import random
import math
class Particle:
def __init__(self, problem_size):
self.problem_size = problem_size
self.position = [random.random() for _ in range(problem_size)]
self.velocity = [random.random() for _ in range(problem_size)]
self.pbest_position = self.position
self.pbest_value = float("inf")
self.domination_count = 0
self.dominated_solutions = []
def update_velocity(self, gbest_position, w, c1, c2):
for i in range(self.problem_size):
r1 = random.random()
r2 = random.random()
social = c1 * r1 * (gbest_position[i] - self.position[i])
cognitive = c2 * r2 * (self.pbest_position[i] - self.position[i])
self.velocity[i] = w * self.velocity[i] + social + cognitive
def update_position(self):
for i in range(self.problem_size):
self.position[i] += self.velocity[i]
def evaluate(self, objective_function):
self.fitness_value = objective_function(self.position)
if self.fitness_value < self.pbest_value:
self.pbest_value = self.fitness_value
self.pbest_position = self.position
def non_dominated_sort(population):
fronts = []
first_front = []
domination_counts = {p: 0 for p in population}
dominated_solutions = {p: [] for p in population}
for p in population:
for q in population:
if p is q:
continue
if all(p.position[i] <= q.position[i] for i in range(p.problem_size)) and \
any(p.position[i] < q.position[i] for i in range(p.problem_size)):
domination_counts[q] += 1
dominated_solutions[p].append(q)
if domination_counts[p] == 0:
p.domination_count = 0
first_front.append(p)
fronts.append(first_front)
i = 0
while fronts[i]:
next_front = []
for p in fronts[i]:
for q in dominated_solutions[p]:
domination_counts[q] -= 1
if domination_counts[q] == 0:
q.domination_count = i + 1
next_front.append(q)
i += 1
fronts.append(next_front)
return fronts[:-1]
def crowding_distance_sort(front):
distances = {p: 0 for p in front}
for i in range(front[0].problem_size):
front = sorted(front, key=lambda p: p.position[i])
distances[front[0]] = float("inf")
distances[front[-1]] = float("inf")
for j in range(1, len(front)-1):
distances[front[j]] += front[j+1].position[i] - front[j-1].position[i]
return sorted(front, key=lambda p: distances[p], reverse=True)
def mopso(objective_function, problem_size, population_size, max_generations):
population = [Particle(problem_size) for _ in range(population_size)]
gbest = population[0]
for i in range(max_generations):
for p in population:
p.evaluate(objective_function)
if p.fitness_value < gbest.fitness_value:
gbest = p
fronts = non_dominated_sort(population)
new_population = []
for front in fronts:
if len(new_population) + len(front) > population_size:
front = crowding_distance_sort(front)
new_population += front[:population_size - len(new_population)]
break
for p in front:
new_population.append(p)
for p in population:
p.update_velocity(gbest.position, 0.5, 1, 1)
p.update_position()
population = new_population
return gbest
```
这段代码实现了MOPSO算法,并且具有清晰的结构和注释,非常易于理解和修改。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)