给我混合单纯形差分进化算法的matlab代码
时间: 2024-10-21 19:14:28 浏览: 42
混合单纯形差分进化(Hybrid Simulated Annealing - Differential Evolution, HSADe)是一种改进的优化算法,结合了差分进化(Differential Evolution, DE)和模拟退火(Simulated Annealing, SA)的优点。以下是一个简化的HSADe算法的基本MATLAB代码示例:
```Matlab
function [solution, fitness] = hsa_de(objfun, lb, ub, pop_size, iter, crossover_rate, mutation_rate, cooling_rate)
% 初始化种群
pop = rand(pop_size, length(lb));
fitness = objfun(pop);
% 模拟退火参数
T = max(fitness);
alpha = 0.95; % 冷却率
for t = 1:iter
% 差分进化部分
for i = 1:pop_size
% 随机选择三个个体
idxs = randperm(pop_size, 3);
a, b, c = pop(idxs(1)), pop(idxs(2)), pop(idxs(3));
% 更新解
mutant = a + mutation_rate * abs(b - c);
if isinside(mutant, lb, ub) && objfun(mutant) < objfun(pop(i))
pop(i) = mutant;
end
end
% 混合模拟退火
for i = 1:length(pop)
% 计算邻居解
neighbor = pop(i) + cooling_rate ./ (t+1) .* (randn(size(pop(i))) .* (ub - lb) + lb);
% 检查是否接受邻居解
if objfun(neighbor) <= objfun(pop(i)) || rand() < exp(-(objfun(neighbor) - objfun(pop(i)))) / T
pop(i) = neighbor;
end
% 更新温度
T *= alpha;
end
% 最佳解更新
[solution, fitness] = minmax(pop, fitness);
end
% 辅助函数:找到最小值和最大值的索引
[min_idx, ~] = min(fitness);
[max_idx, ~] = max(fitness);
solution = pop(min_idx);
fitness = fitness(min_idx);
end
%
阅读全文