解释一下:1: Initialization phase: 2: Initialize the population X of the AO. 3: Initialize the parameters of the AO (i.e., α, δ, etc). 4: WHILE (The end condition is not met) do 5: Calculate the fitness function values. 6: Xbest(t)= Determine the best obtained solution according to the fitness values. 7: for (i = 1,2…,N) do 8: Update the mean value of the current solution XM(t). 9: Update the x, y, G1, G2, Levy(D), etc. 10: if t⩽(2 3)∗T then 11: if rand⩽0.5 then 12: ▹ Step 1: Expanded exploration (X1) 13: Update the current solution using Eq. (3). 14: if Fitness(X1(t + 1)) < Fitness(X(t)) then 15: X(t) =(X1(t + 1)) 16: if Fitness(X1(t + 1)) < Fitness(Xbest(t)) then 17: Xbest(t) =X1(t + 1) 18: end if 19: end if 20: else 21: {▹ Step 2: Narrowed exploration (X2)} 22: Update the current solution using Eq. (5). 23: if Fitness(X2(t + 1)) < Fitness(X(t)) then 24: X(t) =(X2(t + 1)) 25: if Fitness(X2(t + 1)) < Fitness(Xbest(t)) then 26: Xbest(t) =X2(t + 1) 27: end if 28: end if 29: end if 30: else 31: if rand⩽0.5 then 32: {▹ Step 3: Expanded exploitation (X3)} 33: Update the current solution using Eq. (13). 34: if Fitness(X3(t + 1)) < Fitness(X(t)) then 35: X(t) =(X3(t + 1)) 36: if Fitness(X3(t + 1)) < Fitness(Xbest(t)) then 37: Xbest(t) =X3(t + 1) 38: end if 39: end if 40: else 41: ▹ Step 4: Narrowed exploitation (X4) 42: Update the current solution using Eq. (14). 43: if Fitness(X4(t + 1)) < Fitness(X(t)) then 44: X(t) =(X4(t + 1)) 45: ifFitness(X4(t + 1)) < Fitness(Xbest(t)) then 46: Xbest(t) =X4(t + 1) 47: end if 48: end if 49: end if 50: end if 51: end for 52: end while 53: return The best solution (Xbest).
时间: 2023-06-04 08:07:54 浏览: 206
这段文字描述了一种算法,称作"Artificial Organisms"(AO)算法,用于解决优化问题。初始化阶段建立种群,设定一些参数,然后进入迭代循环,计算适应度函数值,选出当前最好的解,更新当前解和种群中的其他成员,以期望找到更优解。在循环中的某些时间点,对当前解进行不同的更新方式,以扩大或缩小搜索空间。最终返回找到的最佳解。
阅读全文